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Diabetes mellitus is commonly associated with systolic/
diastolic hypertension, and a wealth of epidemiological
data suggest that this association is independent of age
and obesity. Much evidence indicates that the link
between diabetes and essential hypertension is
hyperinsulinemia. Thus, when hypertensive patients,
whether obese or of normal body weight, are compared
with age- and weight-matched normotensive control
subjects, a heightened plasma insulin response to a
glucose challenge is consistently found. A state of
cellular resistance to insulin action subtends the
observed hyperinsulinism. With the insulin/glucose-
clamp technique, in combination with tracer glucose
infusion and indirect calorimetry, it has been
demonstrated that the insulin resistance of essential
hypertension is located in peripheral tissues (muscle), is
limited to nonoxidative pathways of glucose disposal
(glycogen synthesis), and correlates directly with the
severity of hypertension. The reasons for the association
of insulin resistance and essential hypertension can be
sought in at least four general types of mechanisms:
Na+ retention, sympathetic nervous system overactivity,
disturbed membrane ion transport, and proliferation of
vascular smooth muscle cells. Physiological maneuvers,
such as calorie restriction (in the overweight patient)
and regular physical exercise, can improve tissue
sensitivity to insulin; evidence indicates that these
maneuvers can also lower blood pressure in both
normotensive and hypertensive individuals. Insulin
resistance and hyperinsulinemia are also associated
with an atherogenic plasma lipid profile. Elevated
plasma insulin concentrations enhance very-low-
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density lipoprotein (VLDL) synthesis, leading to
hypertriglyceridemia. Progressive elimination of lipid
and apolipoproteins from the VLDL particle leads to an
increased formation of intermediate-density and low-
density lipoproteins, both of which are atherogenic.
Last, insulin, independent of its effects on blood
pressure and plasma lipids, is known to be atherogenic.
The hormone enhances cholesterol transport into
arteriolar smooth muscle cells and increases
endogenous lipid synthesis by these cells. Insulin also
stimulates the proliferation of arteriolar smooth muscle
cells, augments collagen synthesis in the vascular wall,
increases the formation of and decreases the regression
of lipid plaques, and stimulates the production of
various growth factors. In summary, insulin resistance
appears to be a syndrome that is associated with a
clustering of metabolic disorders, including non-insulin-
dependent diabetes mellitus, obesity, hypertension,
lipid abnormalities, and atherosclerotic cardiovascular
disease. Diabetes Care 14:173-94, 1991

Obesity, non-insulin-dependent diabetes melli-
tus (NIDDM), hypertension, and atheroscler-
otic cardiovascular disease (ASCVD) are com-
mon metabolic disorders that afflict the majority

of individuals who live in westernized societies. More-
over, all of these common medical disorders occur with
increasing incidence as the population ages (1-3). In
young individuals, obesity, N IDDM, hypertension, and
ASCVD are uncommon. However, by 70 yr of age, the
incidence of these metabolic disorders reaches epi-
demic proportions (Table 1). Over half of such elderly
individuals have evidence of ASCVD (2), and 4 5 - 5 0 %
are obese and hypertensive (1). The incidence of NIDDM
is somewhat lower (~10 -12%; 3), although in some
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TABLE 1
Age-related prevalence of non-insulin-dependent diabetes
mellitus, obesity, essential hypertension, and atheroscler-
otic cardiovascular disease in general population

Non-insulin-dependent
diabetes mellitus

Obesity
Essential hypertension
Atherosclerotic cardiovascular

disease*

Overall
prevalence (%)

- 7
- 3 0
- 2 0

-25

Age-related
prevalence (%)

20 yr 70 yr

<1 - 1 0
- 5 - 5 0
- 5 -50

<1 - 5 0

*Refs. 1-3.

populations it is much higher (4,5). Because obesity,
NIDDM, hypertension, and ASCVD occur frequently in
the population at large, it is not surprising that any given
individual, especially if he or she is >60-70 yr of age,
might manifest two or more of these common medical
problems. In the subsequent discussion, we provide evi-
dence that the common occurrence of the pentad—
obesity, NIDDM, hypertension, ASCVD, and dyslipi-
demia—in the same individual is more than a chance
occurrence and is related in part to a gene or set of genes
for insulin resistance (Table 2). Moreover, it is now rec-
ognized that this pentad is commonly associated with
hyperinsulinemia (6) and a specific abnormal lipid pro-
file, i.e., elevated plasma triglycerides (7), low high-
density lipoprotein cholesterol (HDL-chol) (8), and in-
creased low-density lipoprotein cholesterol (LDL-chol;
9), all of which can predispose to the development of
atherosclerosis (Table 2). In the following sections, we
review a considerable amount of published data that
suggest that insulin resistance, with its compensatory
hyperinsulinemia and associated lipid abnormalities, is
etiologically related to the high prevalence of NIDDM,
obesity, hypertension, and ASCVD in the general pop-
ulation.

OBESITY AND NIDDM: WHAT DO THEY
SHARE IN COMMON?

When a nondiabetic person consumes excessive calo-
ries and gains weight, the body becomes markedly re-
sistant to the action of insulin (10). With the euglycemic
insulin-clamp technique (11), many investigators have
shown that tissue sensitivity to insulin declines by —30-
40% when an individual becomes >35-40% over ideal
body weight (12-16). The insulin resistance primarily
affects muscle (14,17,18) and involves both the oxida-
tive and nonoxidative pathways of glucose disposal
(13,14,16,18). Despite the severe impairment in insulin
action, however, glucose tolerance remains normal be-
cause the pancreatic 3-cells are able to augment their

insulin secretory capacity to offset the insulin resistance
(14,18,19; Fig. 1). The net result is a well-compensated
metabolic state in which the insulin resistance is closely
counterbalanced by an increase in insulin secretion such
that glucose tolerance remains normal or only slightly
impaired. The trade-off is hyperinsulinemia. With ad-
vancing duration of obesity or with further weight gain,
the excessive rates of insulin secretion cannot be main-
tained. Because of the presence of severe insulin resist-
ance, even the slightest decline in insulin secretion will
lead to the development of frank diabetes mellitus (Fig.
1). Nonetheless, both the fasting and meal-stimulated
plasma insulin levels remain 1.5- to 2-fold elevated
compared with age-matched and weight-matched con-
trol subjects (14,18-24). Only much later in the natural
history of obesity and diabetes do we see a significant
decline in insulin secretion. At this stage, plasma insulin
levels return to or below normal, and severe glucose
intolerance ensues. The sequence of events for obese/
diabetic individuals has been confirmed by a prospec-
tive follow-up of the same subjects who were subse-
quently restudied 10 yr later (25; Fig. 1). Similar results
have been published by Saad et al. (20) in a prospective
study carried out in Pima Indians. It is important to un-
derscore, however, that, during most of his/her lifetime,
the obese person—whether he/she maintains normal
glucose tolerance, becomes glucose intolerant, or de-
velops frank diabetes—will be exposed to a persistent
state of hyperinsulinemia.

Normal-weight NIDDM individuals are also charac-
terized by insulin resistance (14,18,21,26-30). How-
ever, as opposed to obesity, where the defect in insulin
action is acquired (10), the insulin resistance is geneti-
cally transmitted in NIDDM. In identical twins and in
the offspring of two diabetic parents, the incidence of
diabetes ranges from 70 to 90% (31-33), whereas in
first-degree relatives, the incidence of diabetes is 30-
40% (34,35).

The severity of the insulin resistance in NIDDM is of
similar magnitude to that observed in nondiabetic obese
subjects and involves both the oxidative and nonoxi-
dative (glycogen synthesis) pathways of glucose disposal
(14-16,18,19,29,30; Fig. 2). Thus, from the standpoint
of insulin action, it is difficult to distinguish between the
nondiabetic obese individual and the normal-weight
NIDDM person. What distinguishes the two groups is
the plasma insulin concentration. In normal-weight
NIDDM patients, the plasma insulin response, although
elevated compared with the normal-weight control sub-

TABLE 2
Syndrome of insulin resistance

Obesity
Non-insulin-dependent diabetes mellitus
Hypertension
Atherosclerotic cardiovascular disease
Dyslipidemia
Hyperinsulinemia
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FIG. 1. Summary of plasma glucose (#)
and insulin (O) responses during 100-g
oral glucose tolerance test (OGTT) and
tissue sensitivity to insulin (top) in con-
trol (CON), obese (OB) nondiabetic,
OB glucose-intolerant (OB-GLUINTOL),
OB hyperinsulinemic (Hi INS) diabetic
(DIAB), and OB hypoinsulinemic (Lo INS)
DIAB subjects. From DeFronzo (18). ©
1988 by the American Diabetes Associa-
tion.
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jects, is significantly decreased compared with the non-
diabetic obese subjects, despite a similar degree of in-
sulin resistance. Early in the evolution of NIDDM, all
subjects are hyperinsulinemic, both in the fasting state
and in response to insulin (14,18-24,36; Fig. 3). In a
group of 77 normal-weight NIDDM patients, both the
fasting and glucose-stimulated plasma insulin concen-
trations rose progressively as fasting plasma glucose in-
creased from 4.4 to 6.6 mM (18,36). Thereafter, the
augmented rate of insulin secretion could not be main-
tained, and there was a progressive decline in both the
fasting and glucose-stimulated plasma insulin concen-
trations. Nonetheless, up to fasting glucose levels of 8.8-
10 mM (i.e., moderately severe diabetes), diabetic
patients remained hyperinsulinemic compared with nor-
mal-weight control subjects even though they were less
hyperinsulinemic than nondiabetic obese subjects (Figs.
1 and 3).

From the above discussion, the scenario outlined in
Fig. 4 can be constructed. Insulin resistance is a char-
acteristic feature of both obesity and NIDDM. In the
former, it is acquired due to excessive calorie intake,
whereas in the latter, the diabetic patient inherits a gene
or set of genes that confer insulin resistance. The normal
P-cell is able to recognize the presence of insulin re-
sistance and to augment its secretion of insulin. In the
obese nondiabetic person, the compensatory response
is nearly perfect, and no alteration in glucose tolerance
ensues. In the diabetic individual, the (3-ceM response is
less than perfect, and glucose intolerance ensues. In
both groups, however, day-long hyperinsulinemia is

present. Only in the severely diabetic patient (fasting
plasma glucose concentration > 10-11 mM) does in-
sulinopenia develop. There is now mounting evidence
that persistently elevated plasma insulin levels can con-
tribute to the development of hypertension, plasma lipid
abnormalities, and atherosclerosis. These associations
will be discussed at length subsequently.
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FIG. 2. Insulin-mediated rates (euglycemic insulin-clamp
technique) of whole-body glucose uptake (total height of
bar), glucose oxidation, and nonoxidative glucose disposal
(glycogen synthesis) in control, normal-weight diabetic,
and obese nondiabetic subjects. *P < 0.01 vs. control.
From DeFronzo (18). © 1988 by the American Diabetes
Association.
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FIG. 3. Starling's curve of pancreas-plasma insulin re-
sponse during oral glucose tolerance test (OGTT). In nor-
mal-weight patients with impaired glucose tolerance and
mild diabetes, plasma insulin response to ingested glucose
increases progressively until fasting glucose concentration
reaches 120 mg/dl. Thereafter, further increases in fasting
glucose level are associated with progressive decline in
insulin secretion. However, even diabetic patients with
moderate fasting hyperglycemia (120-160 mg/dl) maintain
hyperinsulinemic response to glucose challenge. Insu-
linopenic response is not observed until fasting plasma
glucose concentration exceeds 180-200 mg/dl. Same curve
depicts relationship between fasting plasma insulin and
glucose concentrations. From DeFronzo (18). © 1988 by
the American Diabetes Association.

In summary, the results reviewed in this section clearly
demonstrate that insulin resistance is a characteristic
feature of both obesity and NIDDM, involves the path-
ways of glucose oxidation and nonoxidative glucose dis-
posal, and is compensated for, at least in part, by aug-
mented insulin secretion by the pancreas.

HYPERTENSION, OBESITY, AND DIABETES:
COMMON METABOLIC DEFECT?

For many years, it has been recognized that hyperten-
sion is very common in obese (1,37,38) and diabetic
(1,39-41) individuals. It is also known that weight loss
(42-46) and physical training (47-50), interventions that
improve the body's sensitivity to insulin (12,51-56), are
effective in lowering the blood pressure in obese and
diabetic patients. Moreover, the improvement in insulin
sensitivity and resultant lowering of the elevated plasma
insulin concentration are closely related to the decline
in systolic/diastolic blood pressure in nondiabetic obese
subjects (12,52). Similar observations have been made
by Krotkiewski et al. (48), who demonstrated that after
a chronic physical training program, both systolic and
diastolic blood pressure fell, even though body weight
remained unchanged. Significant decreases in blood
pressure were observed only in obese subjects with el-
evated fasting plasma insulin concentrations and cor-
related closely with the decline in fasting plasma insulin
levels (48). Several prospective epidemiological studies

have also shown that the fasting plasma insulin concen-
tration is closely related to the elevation in blood pres-
sure in obese and diabetic subjects (57-63).

Based on the above observations, Manicardi et al.
(64) examined the relationship between blood pressure
and oral glucose tolerance in age-matched obese hy-
pertensive (174/104 mmHg) and obese normotensive
(124/80 mmHg) individuals. Compared with the nor-
motensive group, the obese hypertensive subjects were
glucose intolerant, despite a plasma insulin response
that was approximately threefold greater (Fig. 5). These
results strongly suggest the presence of insulin resistance
in the obese hypertensive group. Most important, the
plasma insulin response during the oral glucose toler-
ance test was strongly correlated (r = 0.75, P < 0.001)
to the elevated systolic/diastolic blood pressure in the
obese hypertensive group; no correlation between blood
pressure and insulin was observed in the normotensive
group. As discussed earlier, the plasma insulin response
provides an indirect measure of the severity of insulin
resistance (Fig. 1). Thus, the results of Manicardi et al.
(64) suggest that insulin resistance per se, or acting
through hyperinsulinemia, is linked to the increase in
systolic/diastolic blood pressure.

Because obesity can lead to insulin resistance (12-
16,18,19), Ferrannini et al. (65) studied a group of nor-
mal-weight young essential hypertensive individuals
with the quantitatively more precise euglycemic insulin-
clamp technique. Insulin-mediated total-body glucose
uptake was reduced by -30-40% in the essential hy-
pertensive group (Fig. 6), and the severity of insulin re-
sistance was closely related (r = 0.76, P < 0.001) to
the increase in blood pressure (Fig. 7). The impairment
in insulin-mediated glucose disposal was entirely ac-
counted for by a defect in nonoxidative glucose uptake
(i.e., glycogen synthesis); stimulation of glucose oxi-

Excessive
Caloric
Intake ^

Inherited
Genetic
Defect

Obesity Diabetes (NIDDM)

Insulin
Resistance

I
Hyperinsulinemia

Hypertension j Atherosclerosis
Hypertriglyceridemia

Hypercholesterolemia
Decreased HDL Choi

FIG. 4. Syndrome of insulin resistance. Metabolic cascade
leading from acquired (obesity) or inherited (non-insulin-
dependent diabetes mellitus; NIDDM) insulin resistance
to hyperinsulinemia and eventually to hypertension, ab-
normal plasma lipid profile, and atherosclerosis is de-
picted. HDL Choi, high-density lipoprotein cholesterol.
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FIG. 5. Plasma glucose and insulin concentrations during standard oral glucose tolerance test performed in obese
hypertensive (•) and obese normotensive (O) individuals. From Manicardi et al. (64).

dation by insulin was not diminished (65). With the fore-
arm-catheterization technique, Ferrannini has docu-
mented that muscle is the primary site of the insulin
resistance in patients with essential hypertension (un-
published observations).

In summary, essential hypertension, like obesity and
NIDDM, is an insulin-resistant state. Note, however,
that not all essential hypertensive subjects are insulin
resistant, and it would be unreasonable to think that
insulin resistance and/or its compensatory hyperinsulin-
emia can explain the development of essential hyper-
tension in all individuals. Nonetheless, in most subjects
with essential hypertension, insulin resistance (65,66)
and hyperinsulinemia (57-66) are present, and in this
group, it is plausible to suggest that these metabolic

abnormalities may contribute in a causal fashion to the
pathogenesis of hypertension.

INSULIN AND HYPERTENSION

From the preceding discussion, it is obvious that hyper-
tension, obesity, and NIDDM are insulin-resistant states,
and their frequent occurrence in the same individual is
probably more than a chance association. It is reason-
able to ask what then is the link between insulin resist-
ance and hypertension? One potential explanation is
that cellular insulin resistance per se is responsible for
the development of hypertension by some unidentified
mechanism. For instance, it is possible that insulin re-
sistance alters the substrate supply or energy needs of

—
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FIG. 6. Insulin-mediated rates (euglycemic insulin-clamp
technique) of whole-body glucose uptake in lean subjects
with essential hypertension and age- and weight-matched
normotensive control subjects. From Ferrannini et al. (65).

FIG. 7. Relationship between insulin-mediated whole-
body glucose uptake and systolic blood pressure in lean
hypertensive and control subjects shown in Fig. 6 (r =
-0.76, P < 0.001). From Ferrannini et al. (65).
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the cell, and the resultant changes in substrate/energy
requirements sensitize, either directly or by altering ion
fluxes into the cell, the vascular smooth muscle re-
sponse to pressor amines such as norepinephrine and
angiotensin II. Unfortunately, little is known about such
interactions, and they are deserving of further investi-
gation.

An alternative explanation for the link between hy-
pertension and insulin resistance is the development of
hyperinsulinemia. The normal (3-cell response to insulin
resistance is to augment its secretion of insulin (Fig. 1),
and individuals with essential hypertension (57-66),
obesity (1,12-16,18-20), and NIDDM (18-30) clearly
have been shown to be hyperinsulinemic. There are sev-
eral potential mechanisms by which elevated plasma
insulin levels can lead to hypertension (Table 3).
Kidney sodium handling. It long has been recognized
that total-body sodium content is increased in obese
(67-69) and NIDDM (70-73) subjects with hyperten-
sion. Moreover, weight loss is associated with natri-
uresis, reduction in blood pressure, and decline in
fasting/meal-stimulated plasma insulin levels (11,42-
46,51,72-79). Conversely, acute carbohydrate inges-
tion is associated with hyperinsulinemia and sodium re-
tention (72,74,77-79). Similarly, refeeding edema with
its associated antinatriuresis has been shown to be re-
lated to hyperinsulinemia (72,74,77-79). All of these
observations point to an important role for insulin in
kidney salt and water reabsorption.

To examine the relationship between insulin and kid-
ney sodium excretion in more detail, euglycemic insu-
lin-clamp studies have been performed in healthy young
subjects (80,81). Within 30-60 min after a physiologi-
cal increment in the plasma insulin concentration, uri-
nary sodium excretion declined, eventually reaching a
nadir that was —50% lower than the basal rate (Fig. 8).
Using micropuncture and microperfusion techniques, the
antinatriuretic effect of insulin has been shown to be
exerted on both the proximal and distal parts of the
nephron (82,83). It is important to emphasize that an
increment in the plasma insulin concentration of as little
as 30-40 fxU/ml is capable of eliciting this antinatri-
uretic effect (82). Such insulin concentrations are within
the range of fasting insulin concentrations observed in
the obese individuals (12-16) and are considerably less
than meal-stimulated insulin levels (Fig. 1). For the com-
pensatory hyperinsulinemia to induce kidney sodium re-

TABLE 3
Mechanisms by which hyperinsulinemia may lead to de-
velopment of hypertension

Increased renal Na+/water reabsorption
Sympathetic nervous system activation
Decreased Na+-K+-ATPase activity
Increased Na+-H+ pump activity
Increased cellular Ca2+ accumulation
Stimulation of growth factors

500
Control Insulin

30 60 90 120 150
Time (min)

210 240

FIG. 8. Effect of euglycemic hyperinsulinemia (—100
|xll/ml) on urinary sodium excretion (UNaV) in healthy
young control subjects. Insulin infusion was begun at 120
min. From DeFronzo et al. (80). © by the American Society
for Clinical Investigation.

tention, expansion of the extracellular fluid volume, and
ultimately hypertension, it is necessary that the kidneys
of obese, diabetic, and hypertensive subjects maintain
normal sensitivity to the antinatriuretic effect of insulin,
even though severe resistance exists regarding carbo-
hydrate metabolism. One study has shown this to be
true in obese insulin-resistant subjects (84). The effect
of insulin on kidney sodium excretion in patients with
NIDDM and essential hypertension has yet to be stud-
ied.
Sympathetic nervous system (SNS). A second mech-
anism by which insulin can cause hypertension involves
stimulation of the sympathetic nervous system. Various
studies in humans (44,85,86) and animals (87-89) have
demonstrated that changes in dietary intake have a pro-
found influence on SNS activity. Thus, fasting decreases
whereas feeding activates the SNS (85-90). In these
studies, the change in SNS activity was closely corre-
lated with the change in plasma insulin concentration.
With the insulin/glucose-clamp technique, Rowe et al.
(91) demonstrated that insulin caused a dose-related in-
crease in the plasma norepinephrine level, whereas hy-
perglycemia was without effect. The increase in plasma
norepinephrine concentration was closely related to an
increase in pulse and blood pressure (Table 4). Note that
an active-transport system in the neural synapse recap-
tures the major fraction of norepinephrine released from
nerve terminals. Thus, the increase in plasma norepi-
nephrine observed by Rowe et al. (91) grossly under-
estimates the magnitude of SNS activation by insulin.
Studies in dogs (92,93), humans (94,95), and rats (96,97)
have provided additional evidence for the role of insulin
in stimulation of the SNS.

The SNS can influence the blood pressure by aug-
menting the cardiac output (increased cardiac contrac-
tibility and heart rate), by increasing cardiopulmonary
blood volume (constriction of the great veins), by di-
rectly vasoconstricting resistant vessels, and by enhanc-
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TABLE 4
Activation of sympathetic nervous system by hyperinsuli-
nemia

Plasma Blood
norepinephrine Pulse pressure

Saline infusion
Hyperglycemic clamp
Euglycemic insulin clamp

200 jtU/ml
500 jtU/ml

0
+

T
tt

0
0

t
tt

0
0

T
tt

Table is based on data from Rowe et al. (91).

ing kidney sodium reabsorption (direct stimulation of
renal tubular sodium reabsorption, renal vasoconstric-
tion, and stimulation of renin secretion) with expansion
of the extracellular fluid volume. For a more detailed
review of the relationship between the SNS and hyper-
tension, the reader is referred to several recent excellent
reviews (90,98,99). In addition to the effects of cate-
cholamines on the cardiovascular system, it is well rec-
ognized that epinephrine is a powerful insulin antago-
nist (100,101). It inhibits insulin-mediated glucose uptake
by muscle and blocks the suppressive action of insulin
on hepatic glucose production. Both of these defects are
characteristic of obesity and NIDDM (18).

The relationship between insulin resistance, plasma
insulin concentration, SNS activity, and hypertension is
summarized in Fig. 9. If insulin resistance represents the
primary metabolic defect that is inherited (NIDDM, es-
sential hypertension) or acquired (obesity, aging), the (3-
cell will respond to this by augmenting its secretion of
insulin. The resultant hyperinsulinemia has two impor-
tant effects: first, insulin directly enhances kidney so-
dium reabsorption, leading to extracellular volume ex-
pansion and hypertension; second, insulin activates the
SNS, and this in turn causes hypertension through var-
ious mechanisms (enhanced kidney sodium reabsorp-
tion and volume expansion, peripheral vasoconstric-
tion, increased cardiac output). Of particular importance,
SNS activation can induce or worsen preexisting insulin

CPRIMARY INSUUN^N
RESISTANCE^ HYPERTENSION

HYPERINSULINEMIA Na + RETENTION

X /
ADRENERGIC OVERACTIVITY

PRIMARY CNS OVERDRIVE SECONDARY INSULIN
RESISTANCE

LIN -̂

FIG. 9. Relationship between insulin resistance, plasma
insulin concentration, sympathetic nervous system activ-
ity, and hypertension.

resistance, closing a feedback loop, which ensures the
perpetuation of both the insulin resistance and hyper-
tension. It should be emphasized that we need not as-
sume that the primary metabolic abnormality that initi-
ates the sequence of events outlined above is insulin
resistance. It is possible that the basic disturbance is
primary central nervous system overdrive, leading to ex-
cessive SNS activity. This in turn can lead to hyperten-
sion and, secondarily, to insulin resistance.
Altered cellular electrolyte transport and composi-
tion. For insulin to act, it first must bind to specific
receptors present on the cell surface of all insulin target
tissues (102; Fig. 10). Once insulin has bound to its
receptor, the second messenger for insulin action is ac-
tivated (103,104). There is considerable controversy
concerning the precise identification of the second mes-
senger for insulin's many varied effects. However, many
authorities believe that tyrosine kinase, which is an in-
tegral part of the (3-subunit of the insulin receptor, is a
prime candidate for insulin's second messenger (105,106;
Fig. 10). Once the second messenger has been gener-
ated, it stimulates glucose transport via a complex
mechanism that involves the translocation of glucose-
transport units from within the cell and their insertion
into the cell membrane (107; Fig. 10). Once inserted
into the cell membrane, the glucose-transport units are
activated by insulin, and glucose fluxes into the cell.
However, free glucose does not accumulate intracellu-
larly because it is rapidly oxidized or converted to gly-
cogen (18). The basic cellular metabolic defects respon-
sible for the insulin resistance of NIDDM, obesity, aging,
and hypertension remain unknown. However, consid-
erable evidence suggests that a defect in glucose trans-
port per se or in coupling of the insulin receptor with
the glucose-transport system is responsible for the im-
pairment in insulin action (18,108-113), although sev-
eral publications implicate a primary abnormality in gly-
cogen synthesis in NIDDM (35,114). Whatever genetic
defect represents the inherited metabolic disturbance re-
sponsible for the insulin resistance in these common

Insulin receptor Insulin

Na+

Tyrosine

Insulin receptor

Insulin

FIG. 10. Schema of mechanism of insulin action on glu-
cose and Na+ metabolism in muscle.
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disorders (diabetes, obesity, hypertension, normal ag-
ing), the pancreatic p-cell responds by augmenting its
secretion of insulin (Figs. 1 and 3). The resultant hyper-
insulinemia can in turn alter the activity of several so-
dium pumps, which are present in all cell membranes,
including the arteriolar smooth muscle cells (Fig. 10).
This will lead to the intracellular accumulation of so-
dium, which in turn sensitizes the arteriolar smooth
muscle cells to the pressor effects of norepinephrine and
angiotensin II (70,115-121). Such a sequence of events
could explain the frequent association between hyper-
insulinemia and hypertension.

Na+-K+-ATPase represents a key insulin-regulated en-
zyme, which plays a critical role in maintaining the nor-
mal intracellular electrolyte milieu (122-124; Fig. 10).
This pump extrudes Na+ in exchange for K+ in a ratio
of 3:2 and is thus electrogenic. Obesity, diabetes, and
hypertension all represent insulin-resistant states with
respect to glucose metabolism. If this insulin resistance
were to extend to the enzyme Na+-K+-ATPase, Na+

would be expected to accumulate within the cell. In
patients with essential hypertension, there is evidence
that both the intracellular Na+ content and transmem-
brane Na+ transport rate are diminished in leukocytes
(125-128); similar but less consistent results have been
reported in erythrocytes (129-132). An excellent review
of this subject has been published by Hilton (133). The
activity of the Na+-K+-ATPase also has been reported
to be reduced in various cell systems in both human
essential hypertension and experimental animal models
of hypertension (115,134). Reduced activity of the Na+

pump also has been reported in other insulin-resistant
states, including obesity (135,136), human insulin-de-
pendent-diabetes mellitus (137), and experimental
models of diabetes (138). Consistent with this, the abil-
ity of insulin to enhance K+ uptake in human obesity
has been shown to be reduced (139). We are unaware
of studies that have examined Na+-K+-ATPase activity
in NIDDM in humans. The studies reviewed above are
consistent with the hypothesis that in certain insulin-
resistant states (i.e., obesity and some types of diabetes)
in humans and animals, the Na+-K+ pump may not be
normally responsive to insulin.

Several recent observations, however, suggest that an
abnormality in the Na+-K+-ATPase pump is unlikely to
explain the elevation in blood pressure in patients with
essential hypertension. First, with the euglycemic insu-
lin-clamp technique, it has been shown that the ability
of a physiological increment in the plasma insulin con-
centration to promote K+ uptake is normal in essential
hypertensive subjects (65). Second, it is well established
that insulin-stimulated K+ uptake in vivo and in vitro is
unrelated to its stimulatory effect on glucose metabolism
in muscle and other insulin-dependent tissues (140-142).
This latter issue has been evaluated more directly with
the forearm-catheterization technique combined with
intra-arterial insulin infusion to quantitate glucose and
K+ uptake by muscle (143). In healthy subjects, physi-
ological hyperinsulinemia markedly enhanced both glu-

cose and K+ uptake by muscle (Fig. 11). When oubain,
a potent inhibitor of the Na+-K+-ATPase pump, was in-
fused with insulin, forearm muscle K+ uptake was com-
pletely abolished, whereas glucose uptake remained
unaffected. These results demonstrate that, in vivo in
humans, the effects of insulin on K+ and glucose uptake
by muscle, the primary tissue responsible for glucose
(18,144) and K+ (145) disposal, are readily dissociable.
There is therefore no a priori reason to expect that the
insulin resistance documented with respect to glucose
metabolism should extend to K+. Third, forearm K+ and
glucose uptake have been directly quantitated in pa-
tients with essential hypertension over a wide range of
plasma insulin concentrations. Although insulin-me-
diated glucose uptake by forearm muscle was reduced
by 30-40% at all insulin doses spanning the physiolog-
ical and pharmacological range, K+ uptake was normal
(E.F., unpublished observations). Fourth, it is uncertain
whether changes in leukocyte/erythrocyte (as opposed
to muscle) Na+ and K+ content can be causally related
to the development of hypertension. On the contrary,
most authorities believe that such changes are genetic,
rather than pathogenetic markers (133).

Another cell membrane pump that has received con-
siderable attention in the pathogenesis of essential hy-
pertension is the Na+-H+ exchanger (146-148; Fig. 10),
which is considered to be equivalent to the Na+-Li+-
cotransport system (147). This transport system is found
in various cell types, has a 1:1 stoichiometry for Na+-
H+ (i.e., it is electrically neutral), and is specifically
inhibited by amiloride (147). Significantly, insulin has
been shown to stimulate the activity of the Na+-proton
exchanger in skeletal muscle and adipocytes (149-154).
This Na+-H+ pump has also been shown to be linked
to Ca2+ exchange (115,121,155,156) and to play a

1.5-1

1.0-
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Basal Ins Ins
+ Oub

Basal Ins Ins
+ Oub

Potassium Uptake
(AiEq/min • 100 ml)

Glucose Uptake
(/umol/min • 100 ml)

FIG. 11. Glucose and K+uptake by forearm muscle during
basal postabsorptive conditions, after intra-arterial insulin
infusion directly into brachial artery (Ins), and after com-
bined intra-arterial insulin/oubain (Ins & Oub) infusion.
From Ferrannini et al. (143).
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CPPRIMARY INSULIN
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PRIMARY Na+/H+
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FIG. 12. Relationship between insulin resistance, plasma
insulin concentration, activity of Na+-H+ exchanger in ar-
terial smooth muscle cells, and hypertension.

critical role in the maintenance of intracellular pH
(157,158).

The physiological functions of the Na+-proton ex-
changer make it an attractive candidate to explain the
elevation in blood pressure observed in insulin-resistant
states such as essential hypertension, diabetes mellitus,
and obesity (Fig. 12). As discussed previously, a primary
defect in insulin action will be counterbalanced by en-
hanced secretion of insulin. The resultant hyperinsulin-
emia will augment Na + -H + exchange (149-154), as-
suming that this pump retains normal sensitivity to insulin
(Fig. 12). The intracellular accumulation of Na+ and
Ca2+ would be expected to enhance the sensitivity of
the vascular smooth musculature to the pressor effects
of norepinephrine, angiotensin, and NaCI loading
(70,115-121,155,156). Enhanced Na+-H+ exchange
also will lead to an increase in cell pH (157,158). In-
tracellular alkalosis is a known stimulator of protein syn-
thesis and cell proliferation (Fig. 12) and eventually could
lead to the characteristic hypertrophy of resistance ves-
sel walls that is observed in established hypertension
(159,160). Intracellular alkalinization also is known to
directly increase smooth muscle contractility (161).
Consistent with this, Ng et al. (162) have demonstrated
increased leukocyte intracellular pH and Na+-Ha+-an-
tiport activity in patients with essential hypertension. In
addition, Na + -H + exchange has been implicated as a
transmembrane signal for various growth factors (163—
166) known to be stimulated by insulin (167).

Several clinical observations are consistent with the
above hypothesis. First, the Na + -H+ exchanger is the
only known genetic marker for essential hypertension
(127,168-172). Second, many investigators have dem-
onstrated increased erythrocyte Na+-H+ countertrans-
port in hypertensive versus nonhypertensive individuals
(148,172-176). Third, increased Na+-H+ activity has
also been demonstrated in platelets and leukocytes of
patients with essential hypertension (162,177,178).
Fourth, intracellular free Ca2+ has been shown to be
increased in erythrocytes of patients with essential hy-
pertension (115,179,180). Fifth, increased Na + -Li +

countertransport activity has been reported in erythro-
cytes of hypertensive versus normotensive insulin-de-
pendent diabetic subjects (181) and in normotensive
children of hypertensive diabetic parents (168). Similar
studies have yet to be carried out in NIDDM subjects.

Note that the sequence of events discussed above was
initiated with a single primary cellular defect: insulin
resistance. In this scheme, the Na+-H+ exchanger can
be viewed as an innocent bystander manipulated by
hyperinsulinemia. Conversely, we could postulate that
the metabolic cascade starts with a primary genetic de-
fect in the Na+-proton exchanger (Fig. 12). Last, these
two pathogenetic sequences are not mutually exclusive.
We could postulate that excessive Na+-H+ pump activ-
ity is an inherited trait but in itself is not sufficient to
cause hypertension. Only in individuals with insulin
resistance and secondary hyperinsulinemia will the
phenotypic expression (i.e., hypertension) of the Na+-
H+ exchanger become manifest.
Enhanced growth factor activity. Insulin acting di-
rectly (167,182,183) or indirectly through the stimula-
tion of growth factors, such as insulinlike growth factor
I (ICF-I; 167,183-189), also may contribute to the de-
velopment of hypertension by causing hypertrophy of
the vascular wall and narrowing of the lumen of the
resistance vessels involved in the regulation of systemic
blood pressure (159,160,190). The components of vas-
cular hypertrophy include increases in the size and
number of myocytes (191) and in the amount of con-
tractile protein, DNA, and collagen (192,193), all of
which can be increased by the actions of insulin and
IGF-I. Consistent with this, receptors for ICF-I and in-
sulin have been identified on blood vessels (183,194).
Further support for the growth factor hypothesis comes
from the classic experiment of Cruz et al. (195), who
demonstrated that chronic insulin infusion into one fem-
oral artery of the dog causes vascular hypertrophy only
on the ipsilateral side.

In summary, much evidence exists supporting the hy-
pothesis that hyperinsulinemia may play an important
pathogenetic role in the development of hypertension
in several insulin-resistant states, including obesity, di-
abetes mellitus, and essential hypertension. Insulin can
elevate the blood pressure via various mechanisms: kid-
ney Na+ retention; SNS activation; enhanced fluxes of
Na+ and Ca+ into vascular smooth muscle cells, leading
to an increased vascular sensitivity to the vasoconstrictor
effect of pressor amines; and proliferation of arteriolar
smooth muscle cells.

INSULIN RESISTANCE, HYPERINSULINEMIA,
AND HYPERLIPIDEMIA

The characteristic lipid profile in an individual with
NIDDM includes 7) decreased serum HDL-chol; 2) in-
creased serum very-low-density lipoprotein (VLDL); and
3) less commonly, an increase in LDL-chol (196-202).
A decrease in HDL-chol (203-208) and an increase in
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LDL-cho! are well-established risk factors for coronary
artery disease (CAD) in both nondiabetic and diabetic
subjects (203-213). Although less commonly appreci-
ated, evidence is mounting that elevated VLDL levels
also are a risk factor for the development of CAD in
both nondiabetic (7,214-219) and NIDDM (197,201,
220-223) subjects.

According to current concepts, LDL is synthesized from
hepatic-derived VLDL by the progressive elimination of
lipids and apolipoproteins (apoAl and apoAII) and the
accumulation of apoC and apoE (224). Intermediate-
density lipoprotein (IDL) represents an intermediate,
which is formed during the conversion of VLDL to LDL
(224), and these IDL particles are particularly athero-
genic (225). From these interconversions, it can be an-
ticipated that factors that enhance VLDL synthesis also
will increase the formation of IDL and LDL and predis-
pose to accelerated atherogenesis.

The plasma VLDL concentration is determined by two
factors: 7) the rate of VLDL synthesis by the liver and
2) the rate of VLDL removal by peripheral tissues (197).
The former in turn is regulated by the ambient plasma
insulin concentration and substrate availability (197,226-
28). In obese nondiabetic subjects, individuals with im-
paired glucose tolerance, and NIDDM patients with mild
to moderate fasting hyperglycemia, insulin resistance is
universally present (18). However, this is offset by en-
hanced pancreatic insulin secretion, and the resultant
hyperinsulinemia in turn augments hepatic VLDL syn-
thesis (196,229,230). Note that a close relationship be-
tween hyperinsulinemia and hypertriglyceridemia has
also been described in population-based studies in healthy
normal-weight subjects (61,231-234). The association
between plasma insulin and triglyceride levels has also
been demonstrated in normoinsulinemic individuals
(61). In addition to elevated insulin levels, NIDDM
subjects, especially if they are obese, have increased
plasma free fatty acid and glucose concentrations
(14,18,196,229,230), providing an abundant substrate
supply to drive VLDL formation. Resistance to the action
of insulin on lipoprotein lipase has also been described
in obesity and diabetes, and a defect in VLDL removal
has been shown to contribute to the hyperlipidemia in
these disorders (235-237).

In summary, there is much evidence that suggests that
insulin resistance, working through hyperinsulinemia,
enhances hepatic VLDL synthesis and contributes to the
elevated plasma triglyceride levels observed in normal-
weight healthy subjects, obese nondiabetic subjects, and
NIDDM subjects. Resistance to the action of insulin on
lipoprotein lipase also contributes to the hypertriglycer-
idemia in some obese and diabetic people.

Reduced HDL-chol concentration is a well-estab-
lished risk factor for CAD in nondiabetic and diabetic
individuals (203-209,213,238-241). Many epidemio-
logical studies have demonstrated an inverse correlation
between the plasma insulin and HDL concentrations in
otherwise healthy subjects (57,196,231-234,242-245).
A similar inverse relationship has been demonstrated in

obese and NIDDM patients (196,234,243). Golay et al.
(246) have provided insight into the mechanism of the
reduced HDL levels in NIDDM. With [3H]apoAI (apoAl
is the major lipoprotein in HDL), Colay et al. demon-
strated that, despite enhanced HDL synthesis (Fig. 13),
the plasma HDL concentration was significantly re-
duced in NIDDM versus control subjects. This decrease
in plasma HDL was entirely accounted for by an in-
crease in the rate of apoAI/HDL degradation, which
exceeded an enhanced rate of apoAI/HDL synthesis (Fig.
13). Within both the control and NIDDM groups, the
plasma insulin concentration and the plasma HDL con-
centration (and apoAl clearance rate) were strongly and
inversely correlated. Although the precise cellular
mechanisms by which insulin regulates HDL metabo-
lism remain to be defined, it is nonetheless clear that
hyperinsulinemia is associated with a decline in circu-
lating HDL levels and an increased risk for CAD.

In summary, there is abundant evidence that now im-
plicates hyperinsulinemia with various lipid abnormal-
ities (increased VLDL/IDL/LDL and decreased HDL),
which are known risk factors for CAD and other macro-
vascular complications. Although hyperinsulinemia may
be the final common denominator ultimately responsi-
ble for the abnormal plasma lipid profile, it is important
to recognize that insulin resistance represents the basic
underlying metabolic defect.

INSULIN RESISTANCE, HYPERINSULINEMIA,
AND ATHEROSCLEROSIS

Epidemiologists interested in atherosclerosis have long
recognized that insulin is a major risk factor for the de-
velopment of CAD and that the effect is independent of
blood pressure and plasma lipid levels (247-255). A

0.8

0.6

0.4

0.2

0

40

30

20

10

CON NIDD CON NIDD

ApoAI/HDL fractional ApoAI/HDL synthetic
clearance rate rate

FIG. 13. High-density lipoprotein (HDL) metabolism in
non-insulin-dependent diabetic (NIDD) and control
(CON) subjects. Apolipoprotein A-l (ApoAI)/HDL syn-
thetic rate was significantly increased in diabetic versus
CON subjects. However, plasma HDL levels were signifi-
cantly reduced in NIDD subjects because of proportion-
ately greater increase in ApoAI/HDL fractional clearance
rate. Based on data from Golay et al. (246).
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growing body of experimental evidence has accumu-
lated to support this association (182). The major effects
of insulin on arterial tissues are summarized in Table 5.
The atherosclerotic plaque is characterized by excessive
amounts of lipid and collagen, foam macrophages, and
proliferated smooth muscle cells (256). All of these con-
stituents are affected by the plasma insulin concentra-
tion. In a now classic experiment, Cruz et al. (195) dem-
onstrated that chronic insulin infusion into one femoral
artery of the dog resulted in marked intimal and medial
proliferation and the accumlation of cholesterol and fatty
acids on the insulin-infused side but was without effect
on the contralateral femoral artery. Subsequent studies
have shown that adding insulin to cultured smooth mus-
cle cells markedly stimulates their proliferation (257-
259). Enhanced LDL-receptor activity and increased
cholesterol and triglyceride synthesis have been dem-
onstrated in arterial smooth muscle cells, fibroblasts,
and mononuclear cells both in vivo and in vitro after
the addition of insulin (260-265). The effect of insulin
to augment lipid synthesis by vascular smooth muscle
cells probably results from its stimulatory action on the
lipogenic enzymes glucose-6-phosphate dehydrogen-
ase, malic enzyme, and 3-hydroxyacyl-CoA dehydro-
genase (266,267). In addition to fostering the develop-
ment of the atherosclerotic plaque, hyperinsulinemia has
been shown to inhibit the reabsorption of plaques once
formed (268,269). Collagen is an integral component of
the atherosclerotic lesion (256), and it is well estab-
lished that collagen synthesis is augmented by insulin
and insulinlike growth factors (270,271). Last, not only
is insulin itself a growth-promoting substance, but it
stimulates various other growth factors, including IGF-
I, which cause cells to proliferate and thereby contribute
to the atherosclerotic process (167,182-189).

In summary, various different sorts of evidence have
implicated insulin, independent of changes in plasma
lipid levels or blood pressure, in the pathogenesis of
atherosclerosis. Although this relationship was initially
promulgated by epidemiological observations (247-255),
a significant body of experimental data has accumulated
to provide the biochemical/cellular basis of this asso-
ciation.

One of the great paradoxes in medicine is the inability
of effective antihypertensive therapy to diminish the in-
creased incidence of coronary artery disease in patients
with hypertension. Normalizing blood pressure in hy-
pertensive individuals reduces the incidence of stroke,

TABLE 5
Effect of insulin on arterial tissues

Proliferation of smooth muscle cells
Enhanced cholesterol synthesis and low-density lipoprotein-receptor

activity
Increased formation and decreased regression of lipid plaques
Stimulation of connective tissue synthesis
Stimulation of growth factors

TABLE 6
Defects in insulin-mediated glucose metabolism in obese,
non-insulin-dependent diabetes mellitus (NIDDM), el-
derly, and essential hypertensive individuals assessed by
euglycemic insulin-clamp technique

Whole-body glucose
uptake

Glucose oxidation
Nonoxidative glucose

disposal
Suppression of hepatic

glucose production

Obesity

I I I
1

I I

1

NIDDM

4* * 4*

I

I I

1

Elderly

I I
I I

0

0

Hypertension

| |
0

a
0

For detailed discussion see text. Nonoxidative glucose disposal pri-
marily represents glycogen synthesis.

kidney failure, congestive heart failure, and accelerated
hypertension but has never been shown to prevent CAD
(272-276). This paradox may be explained by the fail-
ure of antihypertensive therapy to reverse the basic
underlying metabolic problem: insulin resistance with
its compensatory hyperinsulinemia. In fact, most anti-
hypertensive regimens exacerbate the existing insulin
resistance/hyperinsulinemia and promote a more ath-
erogenic plasma lipid profile. This is particularly true of
P-adrenergic antagonists and diuretics (277-281) (see
subsequent discussion).

WHICH IS THE CULPRIT: INSULIN RESISTANCE
OR HYPERINSULINEMIA?

An important question that arises from the preceding
discussion is whether the abnormalities in blood pres-
sure regulation, plasma lipid profile, and/or suscepti-
bility to atherogenesis observed in obese, diabetic, el-
derly, and hypertensive individuals are related to the
insulin resistance per se or to the compensatory increase
in plasma insulin concentration. This is a difficult issue
to address, because the two conditions usually go hand
in hand (Fig. 1). However, the question may be ap-
proached indirectly by examining the mechanism(s) re-
sponsible for the insulin resistance in these four com-
mon clinical disorders. As shown in Table 6, a defect
in total-body glucose metabolism could result from an
abnormality in glucose oxidation, nonoxidative glucose
disposal (glycogen formation), or suppression of hepatic
glucose production. If one metabolic abnormality could
be shown to be related consistently to the clustering of
hypertension, lipid abnormalities, and atherosclerosis,
the case for insulin resistance as a primary etiological
factor would be strengthened. If, on the other hand, a
variety of different metabolic abnormalities are shown
to contribute to the defect in insulin action, it becomes
more difficult to argue that the clustering of hyperten-
sion, hyperlipidemia, and atherosclerosis is due to the
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insulin resistance per se. Rather, a stronger argument
could be made for the pathogenetic role of hyperinsu-
linemia, which is a consistent feature of all insulin-re-
sistant states. A quick perusal of Table 6 shows that
defects in glucose oxidation, nonoxidative glucose dis-
posal, and suppression of hepatic glucose production
all contribute, in varying amounts, to the insulin resist-
ance in obesity, NIDDM, aging, and hypertension. Al-
though certainly not conclusive, these observations fa-
vor the primacy of hyperinsulinemia rather than insulin
resistance in the pathogenesis of the hyperlipidemia, el-
evated blood pressure, and accelerated atherogenesis.
In support of this, there are several well-established
mechanisms by which insulin can lead to hypertension,
diminished HDL-chol, elevated VLDL, and atheroscler-
osis. However, we cannot avoid being impressed by the
rather striking decrease in nonoxidative glucose disposal
that occurs in individuals with obesity, NIDDM, and
essential hypertension (Table 6). Therefore, it behooves
the investigator to gain a more in-depth appreciation of
the potential mechanisms by which a defect in glycogen
synthesis might be related to an abnormality in blood
pressure regulation, lipid metabolism, and atherogene-
sis.

INSULIN RESISTANCE: A MULTIFACETED SYNDROME

From the preceding discussion, it appears that insulin
resistance is a multifaceted syndrome that can express
itself in many ways, depending on a particular individ-
ual's genetic background. Insulin resistance is a com-
mon disorder, which occurs with high frequency in the
general population. As shown in Fig. 14, there is a clear-
cut age-related decline in the body's sensitivity to insulin
(282,283). However, within any given age-group, i.e.,
young, middle aged, and elderly, there is a wide range
of insulin sensitivity. For instance, within the young group,
the most insulin-sensitive individual uses glucose at a
rate that is four times that of the most insulin-resistant
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FIG. 14. Age-related decline in insulin-mediated glucose
disposal (insulin-clamp technique) in healthy normal-
weight subjects. Mean ± SE for young, middle-aged, and
elderly subjects is shown (r = -0.720, P < 0.001).
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FIG. 15. Interaction between insulin-resistance gene and
genes for non-insulin-dependent diabetes mellitus
(NIDDM; D), lipid dyscrasias (L), hypertension (H), and
atherosclerosis (A). In this schema, insulin resistance, act-
ing directly or indirectly through compensatory hyperin-
sulinemia, amplifies genetic predisposition for diabetes,
hyperlipidemia, hypertension, or atherosclerosis, leading
to clinically manifest phenotype.

person. To compensate for this defect in insulin-me-
diated glucose metabolism, the (3-cell must augment its
secretion of insulin. In a sense, this is an adaptive pro-
cess in that the hyperinsulinemia prevents the devel-
opment of glucose intolerance and frank diabetes mel-
litus. However, in other ways, this adaptive process is
maladaptive. In most people, the increase in plasma
insulin concentration probably has little or no conse-
quence. However, in genetically predisposed individ-
uals, the hyperinsulinemia may have important clinical
ramifications (Fig. 15). For instance, in individuals who
have simultaneously inherited a gene that limits the fJ-
cell's ability to augment insulin secretion (i.e., the dia-
betic gene; Fig. 15), the presence of insulin resistance
presents a major problem. Because insulin secretion
cannot be augmented sufficiently to offset the insulin
resistance, the phenotypic expression is that of NIDDM
(Fig. 1). If, in other individuals, the Na+-H+ gene is
overexpressed, the simultaneous presence of hyperin-
sulinemia (i.e., secondary to the insulin resistance) will
lead to the intracellular accumulation of sodium, en-
hanced sensitivity to angiotensin-norepinephrine, and
eventually hypertension. Still, in others who have in-
herited a primary abnormality in lipid metabolism,
hyperinsulinemia may interact with this gene to cause
a phenotype characterized by high plasma VLDL or de-
creased HDL levels (Fig. 15). Similarly, in individuals
who have inherited a gene or set of genes that predis-
pose to atherosclerosis, the simultaneous presence of
hyperinsulinemia will manifest itself as CAD. Note that
excessive caloric intake and the development of obesity,
although an acquired form of insulin resistance, can be
viewed in the same light as the inherited form of insulin
resistance.

In summary, the gene(s) for insulin resistance is (are)
endemic in the general population (Fig. 14). However,
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in most individuals, the phenotypic expression of this
gene(s) goes undetected, and rarely is its biochemical
counterpart (i.e., hyperinsulinemia) picked up because
measurement of the plasma insulin concentration is not
routinely performed. When the insulin-resistance gene
coexists with some other gene, i.e., the hypertension
gene, the diabetes gene, the hyperlipidemia gene, or
the atherogenesis gene, the phenotypic expression as-
sumes the characteristic of the latter (Fig. 14). Thus, a
"touch" of the hypertension gene may in itself be in-
sufficient to elevate blood pressure. However, in the
presence of hyperinsulinemia (which is a compensatory
response to the insulin resistance), the expression of the
hypertension gene can be amplified, and the phenotypic
result is essential hypertension. The same scenario can
be postulated for diabetes, hyperlipidemia, and ather-
osclerosis. This pathogenetic sequence may help ex-
plain the common clustering of diabetes, obesity,
hypertension, elevated VLDL, decreased HDL, and
atherosclerosis in the same individual.

CLINICAL IMPLICATIONS OF INSULIN RESISTANCE

Diabetes and hypertension are common clinical disor-
ders that affect —10 and —40%, of the elderly popu-
lation, respectively (1,3,41,284,285). The treatment of
both of these disorders involves the choice of medica-
tions that have the potential to adversely affect the
body's sensitivity to insulin. Exercise (286-289) and
weight loss (51,287,289) represent the cornerstones of
diabetic management for NIDDM patients. However,
these therapeutic interventions are often insufficient to
restore normoglycemia, and pharmacological ap-
proaches are required. In the United States, sulfonyl-
ureas represent the only class of oral agents available
for the treatment of NIDDM. Acutely, these drugs im-
prove glucose tolerance by enhancing insulin secretion.
Fortunately, their beneficial long-term effects are related
to an improvement in insulin sensitivity (290,291), and
the initially elevated plasma levels usually, but not al-
ways, return to pretreatment values (287). If insulin re-
sistance with its compensatory hyperinsulinemia plays
a role in the development of atherosclerosis, hyperten-
sion, and abnormal serum lipid profile (Fig. 4), it makes
sense to develop antidiabetic drugs whose primary
mechanism of action is to improve the body's sensitivity
to insulin. We also must be concerned about the use of
insulin to treat the patient with NIDDM. There are many
data to support the concept that hyperglycemia and poor
metabolic control play an important role in the devel-
opment of the chronic microvascular complications
(neuropathy, nephropathy, retinopathy) of diabetes mel-
litus (292). Therefore, the American Diabetes Associa-
tion has advocated that physicians strive for the best
possible glycemic control without untoward side effects
from hypoglycemia (293). On the other hand, evidence
reviewed in the preceding sections of this article suggest
that hyperinsulinemia may be deleterious to various or-

gan systems and may lead to macrovascular disease. To
place this controversy in perspective, some quantitative
considerations are helpful. The normal (3-cell secretes
—30 U insulin/day (294). To normalize the plasma glu-
cose profile in NIDDM patients, especially if they are
obese, >100 U insulin/day is required (295,296). Thus,
the physician is faced with a dilemma. Does he/she
aggressively treat the abnormal plasma glucose profile
with the aim of achieving normoglycemia if this can
only be achieved at the expense of marked hyperinsu-
linemia? This is a difficult issue to resolve, because the
relationship between glycemic control and microvas-
cular complications is difficult to quantitate, whereas
the relationship between insulin and macrovascular dis-
ease is even more elusive. Obviously, the best approach
would be to use drugs that improve glucose tolerance
by enhancing tissue sensitivity to insulin, thereby low-
ering the plasma insulin concentration. Unfortunately,
such drugs are not yet available in the U.S.

Treatment of hypertension has been shown to effec-
tively reduce the incidence of stroke, congestive heart
failure, kidney insufficiency, and accelerated/malignant
hypertension but not the incidence of CAD (272-276).
It has become apparent that several categories of drugs
that have gained widespread use in the treatment of
hypertension are associated with worsening glucose tol-
erance and a more atherogenic plasma lipid profile. In
particular, both diuretics (277-279,281,297-299) and
p-adrenergic antagonists (277,279,280,298,300) have
been shown to cause insulin resistance and worsening
glucose tolerance despite an increase in circulating in-
sulin levels. When diuretics and (3-blockers are used in
combination, the deleterious effects on insulin resist-
ance, glucose metabolism, and plasma lipid profile are
even more pronounced (301). Of particular concern
is the recent observation that the insulin resistance
and glucose intolerance persists for many months after
discontinuation of diuretics and ^-blocking agents
(299,300,302). Because insulin resistance, hyperinsu-
linemia, impaired glucose tolerance, and hyperlipide-
mia are all components of the insulin-resistance syn-
drome, we must be concerned about the atherogenic
potential of these antihypertensive drugs, particularly in
diabetic patients. Given the choice, it would seem
preferable to select antihypertensive medications that
are metabolically inert. The closest approximation to
such an ideal drug are the Ca2+-channel blockers
(277,300,303,304) and the converting enzyme inhibi-
tors (277,299,303,305-307). Neither have any known
adverse effects on glucose or lipid metabolism, and there
is even the suggestion that the converting enzyme in-
hibitors may enhance insulin sensitivity and improve
glucose tolerance (299,305-307).

SUMMARY

Insulin resistance with respect to glucose utilization no
longer can be considered an uncommon metabolic dis-
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order. In addition to NIDDM and obesity, insulin re-
sistance has been shown to be a characteristic feature
of the normal aging process and essential hypertension.
Moreover, within the normal healthy adult population,
there is a wide (3- to 4-fold) spectrum of insulin sensi-
tivity (Fig. 14). In fact, a small but significant percentage
of the normal population is as resistant as individuals
with diabetes mellitus or obesity. Nonetheless, glucose
tolerance remains unaltered in such individuals, be-
cause the pancreatic (3-cells are capable of augmenting
their secretion of insulin to precisely offset the insulin
action. However, much evidence has begun to accu-
mulate that chronic day-long hyperinsulinemia is asso-
ciated with the development of hypertension, hyperli-
pidemia, and atherosclerosis. In a sense, insulin resistance
can be viewed as a large iceberg submerged just below
the surface of the water. The physician recognizes only
the tips of the iceberg—diabetes, obesity, hypertension,
hypertriglyceridemia, diminshed HDL-chol, and athero-
sclerosis—which extrude above the surface, and the
complete insulin-resistance syndrome may be missed.
With the recognition that insulin resistance consists of
a cluster of disorders and biochemical abnormalities, it
is important for the various subspecialties (diabetes, me-
tabolism, lipidology, hypertension, cardiology) to inter-
act more closely and to focus their attention on defining
the mechanism(s) responsible for the defect in insulin-
mediated glucose metabolism. Such an understanding
may lead to the development of a new class of drugs,
"insulin sensitizers." By lowering the elevated plasma
insulin concentration, such agents may provide a wide
spectrum of beneficial metabolic effects, which not only
improve glucose utilization but normalize the plasma
lipid profile and decrease the risk for CAD.
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