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Abstract

To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), 

we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 

114,981 controls, overwhelmingly of European descent. We identified ten previously unreported 

T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide 
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analyses of these data are consistent with a long tail of further common variant loci explaining 

much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci 

implicates several processes, including CREBBP-related transcription, adipocytokine signalling 

and cell cycle regulation, in diabetes pathogenesis.

Type 2 diabetes (T2D) is a chronic metabolic disease with multifactorial pathogenesis1. 

Although the genetic contribution to T2D is well recognized, the current set of 56 

established susceptibility loci, identified primarily through large-scale genome-wide 

association studies (GWAS)2–11, captures at best 10% of familial aggregation of the disease. 

The characteristics (effect sizes and risk allele frequencies (RAF)) of the variants 

contributing to the “unexplained” genetic variance remain far from clear. At the same time, 

difficulties in inferring biological mechanisms from the variants of modest effect identified 

by GWAS have inhibited progress in defining the pathophysiological basis of disease 

susceptibility. One key question is whether characterization of increasing numbers of risk 

loci will provide evidence, at the functional level, that susceptibility involves a limited set of 

molecular processes.

To extend the discovery and characterization of variants influencing T2D susceptibility, we 

performed large-scale genotyping using the Metabochip. This custom array of 196,725 

variants was designed to facilitate cost-effective follow-up of nominal associations for T2D 

and other metabolic and cardiovascular traits, and to enhance fine-mapping of established 

loci12. The T2D-nominated component of Metabochip comprises 21,774 variants, including 

5,057 “replication” SNPs that capture the strongest, independent (CEU r2< 0.2) autosomal 

association signals from the GWAS meta-analysis conducted by the DIAbetes Genetics 

Replication and Meta-analysis (DIAGRAM) Consortium. This genome-wide meta-analysis 

(“DIAGRAMv3”) includes data from 12,171 cases and 56,862 controls of European descent 

imputed up to 2.5 million autosomal SNPs, and augments the previously published 

“DIAGRAMv2” meta-analysis4 with four additional GWAS (Supplementary Table 1). The 

T2D-nominated content of Metabochip includes a further 16,717 variants, most chosen from 

1000 Genomes Project pilot data13, to fine-map 27 established susceptibility loci.

RESULTS

Study overview

Our primary investigation combined the DIAGRAMv3 (“Stage 1”) GWAS meta-analysis 

with a “Stage 2” meta-analysis comprising 22,669 cases and 58,119 controls genotyped with 

Metabochip, including 1,178 cases and 2,472 controls of Pakistani descent (PROMIS) 

(Online Methods and Supplementary Table 1). There was little evidence of heterogeneity in 

allelic effects between European- and Pakistani-descent studies in Stage 2 (Supplementary 

Fig. 1), so we report the combined meta-analysis including PROMIS with genomic control 

correction.

T2D susceptibility loci reaching genome-wide significance

Combining Stage 1 and Stage 2 meta-analyses (Supplementary Fig. 2), we identified eight 

new T2D susceptibility loci at genome-wide significance (P < 5 × 10−8) (Table 1, 
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Supplementary Fig. 3 and Supplementary Table 2). By convention, we have labelled loci 

according to the gene nearest to the lead SNP, unless a compelling biological candidate 

maps nearby. The strongest signals mapped to ZMIZ1 (P = 1.0 × 10−10), ANK1 (P = 2.5 × 

10−10), and the region flanking KLHDC5 (P = 6.1 × 10−10). We also observed genome-wide 

significant association at HMG20A (P = 4.6 × 10−9) and GRB14 (P = 1.0 × 10−8), both 

implicated in a recent meta-analysis of T2D in South Asians10. Neither has previously been 

reported in European studies, and both remain genome-wide significant after removing 

PROMIS from the meta-analysis (HMG20A P = 1.9 × 10−9; GRB14 P = 5.8 × 10−9). The 

lead SNPs from both meta-analyses are in strong linkage disequilibrium (LD) (HMG20A r2 

= 0.89 and GRB14 r2 = 0.77 in CEU), and likely represent the same association signals. At 

the previously unreported loci, we observed nominal evidence of association (P < 0.05) in 

the South Asian10 and recent East Asian11 meta-analyses for the lead SNPs at MC4R and 

ZMIZ1 (Supplementary Table 3), with consistent directions of effect across all three ancestry 

groups.

Several of these signals map to loci previously implicated in T2D-related metabolic traits 

(Supplementary Table 4). The lead SNP at MC4R is in strong LD with variants associated 

with BMI14, 15 (CEU r2 = 0.80) and triglycerides16 (CEU r2 = 0.84) and is associated with 

waist circumference and insulin resistance17. As with FTO, the T2D-effect at MC4R is 

probably secondary to the BMI association. The lead SNP at GRB14 is highly correlated 

with variants associated with waist-hip ratio (WHR)18 and high-density lipoprotein (HDL) 

cholesterol16 (CEU r2 = 0.93). At CILP2, the lead SNP for T2D is also associated with 

triglycerides, low-density lipoprotein (LDL) and total cholesterol16. In contrast, the 

previously-reported association signals for haemoglobin A1C (HbA1C) levels19 near ANK1 

are both independent (CEU r2 < 0.01) of the lead T2D SNP from our meta-analysis. Given 

the role played by rare ANK1 mutations in hereditary anemias, the HbA1C associations at 

this locus were assumed to be driven by abnormal erythrocyte development and/or function. 

However, our newly discovered independent association with T2D (in cohorts where HbA1C 

was not used for diagnosis) suggests that variation at this locus also has direct effects on 

glucose homeostasis.

Insights into the genetic architecture of T2D

The associated lead variants at the eight newly identified loci were common (Stage 2 RAF 

0.08–0.89) and had modest effects on T2D susceptibility (allelic odds ratios (OR) 1.07–

1.14). Under a multiplicative model within and between variants, the sibling relative risk 

attributable to lead SNPs rose from λS = 1.093 at the 55 previously described autosomal 

T2D loci represented on Metabochip (DUSP9 on chromosome X is not captured) to λS = 

1.104 after inclusion of the eight newly discovered loci (Supplementary Table 5). Assuming 

a T2D population prevalence of 8%, these 63 newly discovered and established autosomal 

loci together account for 5.7% of variance in disease susceptibility, as calculated by 

transforming dichotomous disease risk onto a continuous liability scale20 (Online Methods).

To determine the extent to which additional common variant associations contribute to the 

overall variance explained, we compared directional consistency in allelic effects between 

the two stages of the meta-analysis. Figure 1 presents the distribution of Z-scores from Stage 
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2, aligned to the risk allele from Stage 1, at a subset of 3,412 independent (CEU r2 < 0.05) 

T2D replication variants that excludes lead SNPs and possible proxies (CEU r2 ≥ 0.1) at the 

63 newly discovered and established loci represented on Metabochip. The blue curve 

represents the expected distribution of Stage 2 Z-scores under the null hypothesis of no 

association. There is a clear shift in the observed distribution, corresponding to closer 

agreement in the direction of allelic effect than expected by chance: 2,172 (69.1%) of the 

3,412 SNPs are concordant (binomial test P = 2.0 × 10−104). For comparison, we examined 

T2D association patterns in 2,707 independent replication SNPs for QT-interval, the trait 

showing weakest correlation with T2D susceptibility among those contributing to 

Metabochip and found far less directional consistency (54.4%, binomial test P = 3.3 × 10−6). 

This modest enrichment most likely reflects weak overlap of risk alleles between the two 

traits, since exclusion of SNPs mapping within 300 kb of directionally consistent T2D 

replication variants reduced this excess (52.5%, binomial test P = 0.060).

The observed distribution of Z-scores can be considered a mixture of: (i) the “null 

distribution” of SNPs having no effect on T2D; and (ii) the “alternative distribution” of 

T2D-associated SNPs (Online Methods). We estimated the features of this alternative 

distribution (red curve) and noted that addition of this class of SNPs significantly improved 

the fit to the observed Z-scores over the null model. Using simulations, based on parameter 

estimates from this mixture model, we estimated that 488 (95% confidence interval (CI) 

456–521) of the independent replication SNPs, in addition to the 63 newly discovered and 

established loci, are associated with T2D susceptibility. For comparison, we undertook 

false-discovery rate (FDR) analysis of the 64,646 SNPs on the Metabochip selected for 

replication of any trait, using P-values from the combined meta-analysis (Online Methods). 

We observed broad agreement between combined meta-analysis P-values, FDR Q-values 

and the posterior probability of alternative distribution membership from the mixture model 

(Supplementary Fig. 4).

We were concerned that these additional, weaker association signals might reflect subtle 

stratification effects not eliminated by genomic control correction. However, using diverse 

European populations from the 1000 Genomes Project13 (Online Methods), we found no 

evidence that directionally-consistent T2D replication SNPs differed from other Metabochip 

replication SNPs with respect to FST (P = 0.88).

As expected, the estimated allelic ORs of the 488 SNPs are modest (1.01–1.11 in Stage 2), 

and larger samples would be required to establish association at genome-wide significance. 

For example, by simulating an additional 100,000 T2D cases and 100,000 controls as a 

“third stage” to the combined meta-analysis, we calculate that only ~37% of the 488 

replication SNPs in the alternative distribution would achieve this threshold. We estimate 

that these variants jointly account for λS = 1.088 (95% CI 1.083–1.094), increasing the 

overall liability-scale variance explained to 10.7% (10.4–11.0%).

Additional sources of variation contributing to susceptibility

These estimates likely set a lower bound to the overall liability-scale variance attributable to 

common SNPs. The mixture model does not take account loci not represented by 

Metabochip T2D replication SNPs due to failures in array design or manufacture or because 
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the association signal in DIAGRAMv3 was too weak to merit inclusion. Indeed, the latter 

applied to two of the genome-wide significant loci, ANKRD55 and GRB14, which were 

nominated for inclusion on Metabochip because of associations with WHR (ANKRD55 and 

GRB14), blood pressure (ANKRD55) and plasma lipid concentrations (GRB14), rather than 

T2D.

To estimate the contribution to the variance explained by common variants genome-wide, 

we undertook polygenic mixed linear modelling analyses using GCTA21, 22 in two 

DIAGRAMv3 GWAS data sets: DGI (1,022 cases, 1,075 controls) and WTCCC (1,924 

cases, 2,938 controls). The estimated liability-scale variance explained by the full set of 

GWAS SNPs was consistent between the two studies: 62.6% for DGI (95% CI 38.1–87.1%) 

and 63.9% for WTCCC (95% CI 52.1–75.8%). These results are similar to those obtained 

from a complementary method integrating polygenic risk score analysis and approximate 

Bayesian computation23 applied to the DIAGRAMv2 meta-analysis4, which estimated 

that ~49% of liability-scale variance was explained by common variants genome-wide. 

These data indicate that a substantial proportion of the variation in T2D risk is captured by 

common variant association signals that, individually, lie beyond unequivocal detection in 

single SNP analyses.

The DIAGRAMv2 meta-analysis4 had provided some evidence for loci harboring multiple 

independent association signals. To understand the extent to which additional variance 

might be attributable to multiple variants at established and newly discovered loci, we 

extended these analyses, focusing on the detection of independent (CEU r2 < 0.05) 

association signals that lie outside the recombination interval containing the lead SNP 

(Supplementary Table 2). We detected two loci at which multiple independent association 

signals attained genome-wide significance: KCNQ1 (rs163184, P = 1.2 × 10−11; rs231361, P 

= 1.2 × 10−9; CEU r2 = 0.01) and CDKN2A/B (rs10811661, P = 3.7 × 10−27; rs944801, P = 

2.4 × 10−9; CEU r2 = 0.01) (Fig. 2). Both signals at KCNQ1 have previously been reported 

in East Asian and European populations4,24. However, the secondary signal at CDKN2A/B, 

which maps to the non-coding CDKN2B-AS1 (ANRIL) transcript, has not previously been 

implicated in T2D susceptibility. This signal is independent of the previously reported 

haplotype effect at the primary T2D signal at this locus, which is itself likely due to the 

phase relationships between two clades of partially correlated variants25,26. We also 

observed putative independent associations (P < 10−5) at DGKB (rs17168486, P = 5.9 × 

10−11; rs6960043, P = 3.4 × 10−7; CEU r2 = 0.01) and MC4R (rs12970134, P = 1.2 × 10−8; 

rs11873305, P = 3.8 × 10−7; CEU r2 = 0.02). These results suggest that multiple 

independent association signals are widespread at T2D susceptibility loci. Imputation up to 

the more complete reference panels emerging from the 1000 Genomes Project13 and 

recently developed approaches that support approximate conditional analyses using meta-

analysis summary level data27 will be important tools for documenting the full extent of 

such effects, especially where the variants map to the same recombination interval.

It has been argued that common variant association signals will often reflect unobserved 

causal alleles of lower frequency and greater effect size28. The fine-mapping content of 

Metabochip allowed us to seek empirical evidence to support this “synthetic association” 

hypothesis. We estimate, using 1000 Genomes Project data13 applied to HapMap CEU 
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samples, that the array captures (CEU r2 ≥ 0.8) 89.6% of common SNPs (minor allele 

frequency (MAF) ≥ 5%) and 60.0% of low-frequency variants (1% ≤ MAF < 5%) across 

Metabochip fine-mapping regions12. This represents a substantial improvement over 

HapMap29, 30 which, across the same regions, captures 76.8% and 32.4% of common and 

low-frequency variants, respectively.

Across 36 fine-mapping regions on Metabochip that contain T2D susceptibility loci 

(including 27 explicitly chosen by DIAGRAM), we compared the characteristics of 

previously reported lead SNPs (defined by GWAS and HapMap imputation) and those 

emerging from the Stage 2 Metabochip meta-analysis. We restricted these comparisons to 

Stage 2 to avoid penalizing low-frequency variants not typed or well-imputed in Stage 1. 

The GWAS and Metabochip lead SNPs were the same, or highly-correlated (CEU r2 > 0.8), 

at 20 loci (15 with CEU r2 > 0.95) (Supplementary Table 6). The low LD between GWAS 

and Metabochip lead SNPs at DGKB and KCNQ1 (both CEU r2 = 0.00) arises because they 

“switch” between independent association signals at these loci (Fig. 2). For the remaining 14 

loci, there was only modest LD between the previously reported GWAS and Metabochip-

defined lead SNPs (CEU r2 between 0.06 and 0.77). However, at only two loci did the lead 

SNP after Metabochip fine-mapping have substantially lower MAF and higher OR than the 

previously reported GWAS lead SNP: PROX1 (rs17712208, MAF = 0.03, OR = 1.20; 

rs340874, MAF = 0.48, OR = 1.06) and KLF14 (7-130116320, MAF = 0.02, OR = 1.10; 

rs972283, MAF = 0.48, OR = 1.01). Since coverage across Metabochip fine-mapping 

regions is incomplete, we cannot unequivocally exclude the presence of causal low-

frequency alleles at any single locus. However, the paucity of low-frequency candidate 

alleles across 36 loci suggests that most causal variants at these loci are common. A 

contribution of even rarer causal alleles (too rare to be represented on Metabochip) is also 

unlikely because the substantial effect sizes required to drive common variant association 

signals are inconsistent with the modest familial aggregation of T2D23. This interpretation, 

favoring common causal alleles, is in agreement with the observed consistency of T2D risk 

variant associations across major ancestry groups31.

Sex-differentiated analyses

We performed sex-differentiated meta-analysis32 (Online Methods and Supplementary Figs. 

5 and 6) to test for association of each SNP with T2D, allowing for heterogeneity in allelic 

effects between males (20,219 cases, 54,604 controls) and females (14,621 cases, 60,377 

controls), thereby identifying two additional loci achieving genome-wide significance 

(Table 2 and Supplementary Table 7). The association signal mapping near CCND2 is most 

significant in males (male P = 1.1 × 10−9, female P = 0.036, heterogeneity P = 0.013), while 

that upstream of GIPR is most significant in females (female P = 2.2 × 10−7, male P = 

0.0037, heterogeneity P = 0.057) (Supplementary Fig. 7). The lead sex-differentiated SNP in 

GIPR is only weakly correlated with previously reported associations with BMI15 (CEU r2 = 

0.06) and two-hour glucose levels33 (CEU r2 = 0.07) (Supplementary Table 4).

The sex-differentiated analyses also revealed nominal evidence of heterogeneity (P < 0.05) 

at four established T2D susceptibility loci (Table 2 and Supplementary Tables 7 and 8): 

KCNQ1 (P = 0.0013), DGKB (P = 0.0068) and BCL11A (P = 0.012) were most significantly 
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associated in males, and GRB14 (P = 0.0080) in females. The sex-differentiated association 

at GRB14 is consistent with the female-specific effect on WHR observed at this locus18. As 

KCNQ1 and DGKB demonstrate multiple independent associations in the sex-combined 

meta-analysis, we investigated whether sex differences in allelic effects were consistent 

across these signals (Supplementary Fig. 8). This appeared true for DGKB (rs17168486, 

male P = 6.5 × 10−13, female P = 0.0052; rs6960043, male P = 7.9 × 10−7, female P = 

0.015), but not KCNQ1 (rs163184, male P = 8.5 × 10−15, female P = 7.8 × 10−3; rs231361, 

male P = 2.9 × 10−6, female P = 2.9 × 10−6).

Understanding the biology of T2D susceptibility loci

For most T2D susceptibility loci, the underlying causal variants and the genes through 

which they act are yet to be identified, and the pathophysiological processes mediating 

disease risk remain unclear. We applied a variety of approaches to the newly discovered and 

established T2D susceptibility loci, and in some cases to putative loci with more modest 

evidence of association, to identify mechanisms involved in disease pathogenesis.

Physiological analyses

As noted earlier, lead SNPs at several newly identified loci are in strong LD with variants 

associated with other T2D-related metabolic traits. To gain a more complete picture of 

patterns of trait overlap, we first assessed the effect of T2D risk alleles on glycemic traits in 

European-descent meta-analyses from the MAGIC Investigators (Online Methods). Fasting 

glucose associations were analyzed for up to 133,010 non-diabetic individuals with GWAS 

and/or Metabochip data34. In addition to the nine loci previously reported (MTNR1B, 

DGKB, ADCY5, PROX1, GCK, GCKR, TCF7L2, SLC30A8 and C2CD4A)4,5, four more 

T2D association signals were genome-wide significant for fasting glucose: CDKN2A/B (P = 

5.7 × 10−18), ARAP1 (P = 1.2 × 10−10), IGF2BP2 (P = 1.8 × 10−8) and CDKAL1 (P = 2.0 × 

10−8) (Supplementary Table 9). The ZBED3 locus also attained genome-wide significance 

with fasting glucose after adjustment for BMI (P = 1.2 × 10−8). In contrast, lead T2D SNPs 

at 27 of the newly discovered and established loci showed no evidence of association with 

fasting glucose (P > 0.05), despite sample sizes ranging from 38,424 to 132,999 individuals 

(Supplementary Table 10 and Supplementary Fig. 9). Lead T2D SNPs at the remaining 24 

loci were nominally associated with fasting glucose (P < 0.05), all with directionally 

consistent effects. These data extend previous reports indicating that the genetic landscape 

of pathological and physiological variation in glycemia is only partially overlapping, and are 

consistent with reciprocal analyses reported in the companion MAGIC paper34.

Second, we extended our previous analysis4 of the physiological consequences of T2D risk 

alleles to include the newly identified loci. We used the published MAGIC meta-analysis 

(up to 37,037 non-diabetic individuals) of HOMA indices of beta-cell function and insulin 

sensitivity5 as these traits were not included in the enlarged Metabochip study34. The risk 

allele at ANK1 has features (nominally significant reduction in HOMA-B) indicating a 

primary effect on beta-cell function, whereas those at GRB14 and AKNRD55 are 

characteristic of loci acting primarily through insulin resistance (increased HOMA-IR) 

(Supplementary Fig. 10 and Supplementary Table 10). The results for GRB14 are consistent 

with its broad impact on insulin-resistance related traits (described below), while at 
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AKNRD55, these analyses point to MAP3K1, encoding MEK kinase, a key component of the 

insulin-signalling pathway, as the stand-out local candidate.

Next, we examined the effect of T2D risk alleles on anthropometric and lipid traits using 

data from the GIANT Consortium (up to 119,600 individuals after excluding data from T2D 

case series)15 and the Global Lipids Genetics Consortium (up to 100,184 individuals)16 

(Online Methods and Supplementary Tables 11 and 12). The only lead SNP to demonstrate 

convincing evidence of association (P < 10−5) with adiposity was at MC4R. The lead SNPs 

at MC4R and GRB14 show the same pattern of lipid associations (P < 10−5): reduced HDL 

and raised triglycerides. In contrast, the lipid associations at CILP2 and GIPR ran counter to 

expected epidemiological correlations: T2D risk alleles were associated with reduced 

triglyceride levels at both loci, and at CILP2 with reduced LDL and total cholesterol.

Finally, we noticed that the lead T2D SNP at the BCAR1 locus is genome-wide significant 

for type 1 diabetes (T1D)35, although risk is conferred by the opposite alleles. Across 37 

T1D susceptibility loci (Supplementary Fig. 11), we observed nominal evidence (P < 0.05) 

of association to T2D at six. For three of these (BCAR1, GLIS3 and RAD51L1), the T1D risk 

allele was protective for T2D, while at the others (C6orf173, COBL and C10orf59), the 

effects were coincident. These data indicate that rates of diagnostic misclassification among 

T2D cases in our study are low, and also highlight interesting points of overlap in the 

processes involved in risk of, and protection from, these two major forms of diabetes.

Mapping potential causal transcripts and variants

The T2D-association signals emerging from the present meta-analysis map to regions 

containing many transcripts and potential functional variants. To identify promising regional 

transcripts, we examined expression quantitative trait locus (eQTL) data from a variety of 

tissues (Online Methods and Supplementary Note). At six of the newly discovered loci, the 

lead T2D SNP showed strong cis-eQTL associations and was highly correlated (CEU r2 > 

0.8) with the lead cis-eQTL SNP (Supplementary Table 13). These “coincident” eQTL 

implicate GRB14 (omental fat), ANK1 (omental and subcutaneous fat, liver and prefrontal 

cortex), KLHDC5 (blood, T cells and CD4+ lymphocytes), BCAR1 (blood), ATP13A1 (at the 

CILP2 locus, blood and monocytes), HMG20A (liver) and LINGO1 (also at the HMG20A 

locus, adipose tissue). For those loci (GRB14, ANK1 and BCAR1) for which individual-level 

expression data for the appropriate tissues were available36, we confirmed signal 

coincidence by conditional analyses (Online Methods and Supplementary Table 14).

We used 1000 Genomes Project data13 to search for non-synonymous variants in strong LD 

(CEU r2 > 0.8) with lead SNPs at the newly discovered loci (Online Methods). The only 

candidate allele uncovered was a non-synonymous variant in exon 6 of TM6SF2 

(19-19379549, CEU r2 = 0.98 with rs10401969) at the CILP2 locus. This change is 

predicted by SIFT37 to have no appreciable effect on protein function.

Pathway and protein-protein interaction analyses

To extend previous efforts to define pathways and networks involved in T2D pathogenesis4, 

we combined meta-analysis data with protein-protein interactions (PPI), semantic 
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relationships within the published literature and annotated pathways (Fig. 3). For these 

analyses, we generated a “primary” list of 77 transcripts mapping nearest to lead SNPs at 

T2D susceptibility loci or implicated in monogenic diabetes38 (Online Methods and 

Supplementary Table 15).

Using a refined database of high-confidence PPI39, 40, we constructed a network of 314 

proteins from these 77 transcripts using DAPPLE41. We detected an excess of physical 

interactions in the network, both direct (between the associated transcripts themselves, P < 

10−4) and indirect (via 237 shared interactors not on the list of associated transcripts, P = 

0.0070). There was no evidence that this set of shared interactors was enriched for T2D-

associated variants. Some interactions, such as those between the potassium channel 

encoding genes KCNJ11 and ABCC8, are expected, while other sub-networks are of greater 

novelty. For example, the transcriptional co-activator protein CREBBP, implicated in the 

coupling of chromatin remodelling to transcription factor recognition, does not map to any 

T2D susceptibility locus. However, it is the most connected gene for protein-level 

interactions (P < 0.005) in the PPI network, interacting with nine primary transcripts, eight 

implicated in monogenic diabetes or mapping to established T2D susceptibility loci 

(HNF1A, HNF1B, HNF4A, PLAGL1, TCF7L2, PPARG, PROX1 and NOTCH2) and one 

from a locus with a strong, but not genome-wide significant, association (ETS1, lead SNP 

rs7931302, P = 3.8 × 10−7). Other shared interactors identified through these analyses 

included SERTAD1, FOXO1, PPARGC1A, GRB10 and MAFA. Several of these play roles in 

the transcriptional regulation of diabetes-relevant tissues, and some also interact with 

CREBBP. We used a pre-defined set of 1,814 genes encoding “DNA-binding proteins” 

(Online Methods) to show that: (i) T2D signals are highly enriched for transcription factors 

(21 of 71 primary transcripts listed within the HGNC catalog, compared to 1,793 of 19,162, 

P = 2.3 × 10−6); and (ii) transcription factors within T2D loci are enriched for interaction 

with CREBBP (taking the 1,164 listed in the protein interaction database, 9 of 21 compared 

with 127 of 1,143, P = 2.7 × 10−4). These data suggest that modulation of CREBBP-binding 

transcription factors plays an important role in T2D susceptibility.

The same set of 77 primary transcripts showed modest evidence of excess connectivity (P = 

0.020 by permutation) using text-mining approaches42 (Online Methods). When we used 

this set of 77 genes as a “seed” to query a list of 77 “secondary” transcripts (nearest to lead 

SNPs with posterior probability of T2D-association > 75% from the mixture model) 

(Supplementary Table 15), we found significant connections (P < 0.001) between the 

primary associated transcripts and four other genes: LEPR (leptin obesity pathways), MYC 

(cell-cycle pathway), GATA6 (pancreas development pathway) and DLL4 (Notch signalling 

target).

We also tested for enrichment of GWAS associated transcripts in pathway data. To retain 

power, we focused on 16 biological hypotheses chosen for assumed relevance to T2D 

pathogenesis4,43–45 (Supplementary Note). We used a two-step modified gene-set 

enrichment analysis (GSEA) approach applied sequentially to Stage 1 (using MAGENTA46) 

and Stage 2 meta-analyses (Online Methods and Supplementary Table 16). Of the 16 

biological hypotheses tested, two demonstrated reproducible enrichment of T2D 

associations. The strongest enrichment was observed for a broader set of primary and 
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secondary transcripts mapping to T2D-associated loci in the adipocytokine signalling 

pathway (MAGENTA P = 6.2 × 10−5; modified GSEA P = 1.6 × 10−4). This gene set 

includes the adiponectin, leptin and TNF-alpha signalling pathways previously implicated in 

the development of insulin resistance47, but for which genome-wide significant common 

variant associations with T2D susceptibility have not been previously reported. This analysis 

highlighted eight genes in this pathway most likely to be causal for T2D susceptibility: IRS1, 

LEPR, RELA, RXRG, ACSL1, NFKB1, CAMKK1 and a monogenic diabetes gene AKT2. 

Members of this pathway were also strongly represented (17 out of 314) in the DAPPLE PPI 

network (P = 7.5 × 10−14). Modest but robust enrichment was also observed for genes 

influencing cell cycle, in particular regulators of the G1 phase during mitosis (MAGENTA 

P = 2.0 × 10−4; modified GSEA P = 3.0 × 10−3). The majority of genes driving these cell-

cycle enrichments were cyclin-dependent kinase (CDK) inhibitors (CDKN2A/B, CDKN1C 

and CDKN2C) and cyclins that activate CDKs (CCNE2, CCND2 and CCNA2). Many of 

these regulate CDK4 or CDK6, which are known to play a role in pancreatic beta-cell 

proliferation48, 49. We saw no evidence of enrichment for other processes implicated in T2D 

pathogenesis, including amyloid formation, ER stress and insulin signalling.

DISCUSSION

We have expanded T2D association analysis to almost 150,000 individuals. In so doing, we 

have added another 10 loci to the list of confirmed common variant signals: for several of 

these, we have identified strong positional candidates based on expression data and known 

biology. The data support the view that much of the overall variance in T2D susceptibility 

can be attributed to the impact of a large number of common causal variants, most of very 

modest effect. While such a model poses challenges for accumulating genome-wide 

significant evidence of association at a specific variant, it does suggest that genetic profiling 

based on the entirety of sequence variation has the potential to provide useful risk 

stratification for T2D.

If common causal alleles explain a substantial component of T2D susceptibility, the 

contribution of rare and low-frequency risk variants may be less than is often assumed: re-

sequencing studies will soon provide empirical data to address this question. In particular, it 

will be important to determine whether, as the number of susceptibility loci increases, there 

is evidence that the pathophysiological mechanisms implicated by human genetics coalesce 

around a limited set of core pathways and networks. Our data suggest that this may be the 

case, with a variety of analytical approaches pointing to cell cycle regulation, adipocytokine 

signalling and CREBBP-related transcription factor activity as key processes involved in 

T2D pathogenesis.

ONLINE METHODS

Stage 1 meta-analysis

The Stage 1 meta-analysis consisted of 12,171 T2D cases and 56,862 controls across 12 

GWAS from European descent populations (Supplementary Table 1). Samples were typed 

with a range of GWAS genotyping products. Sample and SNP quality control (QC) were 

undertaken within each study. Each GWAS was then imputed at up to 2.5 million SNPs 
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using CEU samples from Phase II of the International HapMap Project28. Each SNP with 

MAF > 1% passing QC was tested for association with T2D under an additive model after 

adjustment for study-specific covariates, including indicators of population structure. The 

results of each GWAS were corrected for residual population structure using the genomic 

control inflation factor50 and were combined via fixed-effects inverse-variance weighted 

meta-analysis. The results of the Stage 1 meta-analysis were subsequently corrected by 

genomic control (λGC = 1.10).

Stage 2 meta-analysis

The Stage 2 meta-analysis consisted of 21,491 T2D cases and 55,647 controls across 25 

studies from European descent populations and 1,178 T2D cases and 2,472 controls from 

one study of Pakistani descent (PROMIS) (Supplementary Table 1). All samples were 

genotyped with Metabochip. Sample and SNP QC were undertaken within each study. Each 

SNP with MAF > 1% passing QC was tested for association with T2D under an additive 

model after adjustment for study-specific covariates. We would expect inflation in 

association signals across the content of Metabochip, even in the absence of population 

structure, because it has been designed to be enriched for T2D and other T2D-related 

metabolic trait loci. The results of each study were thus corrected for residual population 

structure using the genomic control inflation factor obtained from a subset of 3,598 

independent “QT-interval” SNPs (CEU r2 < 0.05), which were not expected to be associated 

with T2D. The Stage 2 meta-analysis was performed in two steps: (i) combine all studies of 

European descent; and (ii) add the PROMIS study. In both steps, the results of each study 

were combined via fixed-effects inverse-variance weighted meta-analysis. The results of the 

Stage 2 European meta-analysis were corrected by “QT-interval” genomic control (λQT = 

1.19), but this adjustment was not then necessary after the addition of PROMIS (λQT = 0.99 

was less than 1). Heterogeneity in allelic effects between European descent studies and 

subsequently between the European meta-analysis and PROMIS was assessed by means of 

Cochran’s Q-statistic51.

Combined meta-analysis

The results of the Stage 1 and Stage 2 meta-analyses were combined for all Metabochip 

SNPs via fixed-effects inverse-variance weighted meta-analysis. The combined meta-

analysis consisted of 34,840 cases and 114,981 controls. This was performed in two steps: 

(i) combine Stage 1 meta-analysis with European descent Stage 2 meta-analysis; and (ii) add 

the PROMIS study. The results of the combined European meta-analysis was corrected by 

“QT-interval” genomic control (λQT = 1.13), but this adjustment was not necessary after the 

addition of PROMIS (λQT = 0.98 was less than 1) (Supplementary Fig. 12). Heterogeneity in 

allelic effects between the Stage 1 and Stage 2 meta-analyses was assessed by means of 

Cochran’s Q-statistic.

Look-up of meta-analysis results for lead SNPs in GWAS of South and East Asian descent

We obtained summary statistics (RAFs, association P-values, allelic ORs and 95% CIs) for 

lead SNPs at the newly discovered loci in meta-analyses of T2D GWAS in: (i) 5,561 cases 

and 14,458 controls of South Asian descent10, excluding 1,958 overlapping samples from 
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PROMIS that were also included in our study, comprising 568,976 directly genotyped 

autosomal SNPs; and (ii) 6,952 cases and 11,865 controls of East Asian descent11, 

comprising 2,626,356 directly genotyped and imputed autosomal SNPs. For each SNP, 

summary statistics were aligned to the risk allele in our primarily European descent meta-

analysis.

Calculation of sibling relative risk and liability-scale variance explained

Assuming a multiplicative model (within and between variants), the contribution to the 

sibling relative risk of a set of N SNPs is given by

where pj and ψj denote the RAF and corresponding allelic OR at the jth SNP52. Assuming 

disease prevalence, K, the liability-scale variance20 explained by these SNPs is given by

In this expression, T=φ−1(1-K), T1=φ−1(1-λSK), and ω=z/K, where z is the height of the 

standard Gaussian density at T.

Z-score mixture modelling

We considered the distribution of Z-scores from the Stage 2 meta-analysis, aligned to the 

risk allele from Stage 1, at a subset of 3,412 independent T2D replication variants (CEU r2 < 

0.05), excluding lead SNPs and proxies (CEU r2 ≥ 0.1) at the 63 established and newly 

discovered susceptibility loci on Metabochip. The Stage 2 Z-scores were modelled as a 

mixture of two Gaussian distributions: (i) with mean zero and unit variance (i.e. under the 

null hypothesis of no association); and (ii) with unknown mean (greater than zero) and 

variance (i.e. under the alternative hypothesis). The mean and variance of the alternative 

distribution, and the mixing proportion, were estimated using an expectation-maximization 

algorithm.

We estimated the posterior probability that each of the 3,412 independent replication SNPs 

is truly associated with T2D from the mixture distribution. We approximated the 

contribution of these SNPs to λS by simulation from the mixture distribution. For each 

simulated replicate, we selected “causal” variants at random from these SNPs according to 

their posterior probability of association. Over 1,000 replicates, we approximated the mean 

and 95% CI for: (i) the number of “causal” variants among the 3,412 independent replication 

SNPs; and (ii) the contribution to λS, using estimated RAFs and allelic ORs from the Stage 2 

meta-analysis. For each replicate, we also generated a hypothetical third stage to the study 

consisting of 100,000 T2D cases and 100,000 controls. For each “causal” variant, we 

generated association summary statistics (Z-score aligned to the risk allele from Stage 1) 

according to the RAF and allelic OR from our Stage 2 meta-analysis.
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Assessment of allele frequency variation across European populations

We calculated F-statistics (FST) across European populations using data from the 1000 

Genomes Project (CEU, TSI, FIN, GBR and IBS)13 for the subset of SNPs selected for 

replication on Metabochip. FST was calculated by comparing mean heterozygosity across all 

populations to the mean within each sub-population, weighted by the number of contributing 

chromosomes from each sub-population. We compared FST for the subset of T2D replication 

SNPs that were directionally consistent between Stage 1 and Stage 2 meta-analyses with all 

Metabochip replication SNPs (up to 65,345 SNPs), using the Kolmogorov-Smirnov test.

False-discovery rate (FDR) analysis

We undertook FDR analysis53 of 64,646 Metabochip replication SNPs using combined 

meta-analysis P-values. From this analysis, we observed π0̂ = 0.88, consistent with an 

excess of true positives in this set. We compared these P-values with FDR Q-values and 

posterior probabilities of membership to the alternative distribution from the mixture model 

(Supplementary Fig. 4) at the set of 2,172 T2D replication SNPs with concordant direct of 

allelic effect in both stages of the meta-analysis, after exclusion of 11 AT/GC SNPs with 

obvious strand orientation misalignments. FDR analysis also indicated an excess of expected 

true positives in this set of SNPs, even at relatively consistent thresholds (for example, we 

expect one false positive and 66 true positives at a Q-value of 0.014).

Sex-differentiated meta-analysis

The Stage 1, Stage 2 and combined meta-analyses described above were repeated for males 

and females separately with correction for population structure within each sex 

(Supplementary Fig. 13). The male-specific meta-analysis consisted of 20,219 cases and 

54,604 controls, while the female-specific meta-analysis consisted of 14,621 cases and 

60,377 controls. The sex-specific meta-analyses were then combined to conduct a sex-

differentiated test of association and a test of heterogeneity in allelic effects between males 

and females32.

Physiological analyses

We obtained summary statistics (association P-values and Z-scores for direction of effect or 

allelic effects and standard errors) for lead T2D SNPs in GWAS meta-analyses of metabolic 

traits in European descent populations. Summary statistics were aligned to the T2D risk 

allele from the combined meta-analysis. We obtained summary statistics for lead SNPs in all 

newly discovered and established loci for glycemic traits in non-diabetic individuals from 

the MAGIC Investigators5, 34. For fasting glucose and fasting insulin, the meta-analysis 

comprised up to 133,010 individuals, genotyped with GWAS arrays and imputed on up 

to ~2.5 million SNPs, or genotyped with Metabochip. We also considered surrogate 

estimates of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) derived by 

homeostasis model assessment in up to 38,238 individuals (from GWAS meta-analysis only 

since these traits were not investigated in the enlarged MAGIC Metabochip study). We 

obtained summary statistics for lead SNPs in the newly discovered T2D loci (also including 

GRB14 and HMG20A) for BMI in up to 119,600 individuals from the GIANT 

Consortium15. To eliminate potential bias in BMI allelic effect estimates at T2D 
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susceptibility loci54, we restricted our attention to meta-analysis of population-based studies 

not ascertained for disease status for ~2.8 million directly genotyped and/or imputed SNPs. 

We obtained summary statistics for the same SNPs for plasma lipid concentrations from the 

Global Lipids Genetics Consortium16. This meta-analysis comprised ~2.6 million directly 

genotyped and/or imputed SNPs assessed for association to plasma concentrations of: total 

cholesterol (up to 100,184 individuals); LDL (up to 95,454 individuals); HDL (up to 99,900 

individuals); and triglycerides (up to 96,598 individuals).

We also examined T2D association summary statistics at lead SNPs for 37 established T1D 

susceptibility loci. For each of these SNPs, we reported the allelic OR (aligned to the T2D 

risk-allele) and P-values in: (i) our Stage 1 T2D meta-analysis; and (ii) a GWAS meta-

analysis of 7,514 T1D cases and 9,045 population controls from European descent 

populations from the Type 1 Diabetes Genetics Consortium35.

Expression analyses

We identified proxies (CEU r2 > 0.8) for each lead T2D SNP in our newly discovered loci 

(also including GRB14 and HMG20A). We interrogated public databases and unpublished 

resources for cis-eQTL expression with these SNPs in multiple tissues (details of these 

resources are summarized in the Supplementary Note). The collated results from these 

resources met study-specific criteria for statistical significance for association with transcript 

expression. For each transcript associated with a lead T2D SNP (or proxy), we identified the 

lead cis-eQTL SNP, and then estimated LD between them using 1000 Genomes Project data 

to assess coincidence of the signals.

We subsequently tested for association of each lead T2D SNP with the expression of 

flanking transcripts (within a 1 Mb window) in 603 subcutaneous adipose tissue samples and 

745 peripheral blood samples from individuals from the Icelandic population, genotyped 

using the Illumina HumanHap 300 Bead Array, and imputed up to ~2.5M SNPs36. We 

modelled the log-average expression ratio of two fluorphores as a function of the allele 

count (expected allele count for imputed SNPs) in a linear regression framework, with 

adjustment for age and sex (and differential cell count for blood samples) as covariates. All 

P-values were also adjusted for the relatedness between individuals by simulating genotypes 

through the corresponding Icelandic genealogy55. We also identified the most strongly 

associated cis-eQTL SNP for each flanking transcript. We then performed a conditional test 

of association of the transcript with the cis-eQTL SNP within the same linear regression 

framework, with additional adjustment for the lead T2D SNP as a covariate. The conditional 

analyses determine whether the cis-eQTL SNP association with the transcript can be 

explained by the lead T2D SNP.

We searched the 1000 Genomes Project data (Phase I interim release) for non-synonymous 

variants in strong LD (CEU r2 > 0.8) with lead T2D SNPs in the newly discovered loci (also 

including GRB14 and HMG20A). Identified non-synonymous variants were subsequently 

interrogated for likely downstream functional consequences using SIFT37.
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Pathway, text mining and PPI analyses

We generated two lists of transcripts on the basis of the results of the sex-combined and sex-

differentiated meta-analyses. The “primary” list included: (i) the nearest transcript to the 

lead SNP at 41 previously reported common variant loci identified in European descent 

populations; (ii) the nearest transcript to the lead SNP at the ten newly identified loci (P < 5 

× 10−8) from the sex-combined meta-analysis, including GRB14 and HMG20A; (iii) the 

nearest transcript to the lead SNP at both novel signals (P < 5 × 10−8) from the sex-

differentiated meta-analysis; (iv) the nearest transcript to the lead SNP at six additional loci 

with the strongest evidence of association (P < 5 × 10−7) from the sex-combined meta-

analysis; and (v) 18 genes implicated in monogenic forms of diabetes38, not already 

overlapping other loci included in the list. The “secondary” list incorporated the nearest 

transcript to the lead SNP at 77 additional loci with posterior probability of association of at 

least 75% from the mixture model, not already included in the primary list.

We tested the hypothesis that a PPI network built from the 77 primary transcripts was 

significantly enriched for physical interaction over and above that expected by chance using 

DAPPLE41. To build networks, DAPPLE uses a refined database of high-confidence 

interactions39, 40, which emphasizes confidence of interaction over completeness, with the 

result that not all proteins are represented. We considered two categories of interactions: 

direct (i.e. between the associated transcripts themselves) and indirect (i.e. via common 

interactors that were not among the associated transcripts). We assessed the significance of 

the enrichment of physical interactions by permutation. Subsequently, we used the network 

as a “seeds” to query against the 77 secondary transcripts.

We used GRAIL to highlight genes from T2D susceptibility loci using similarity of text in 

PubMed abstracts or in gene-ontology associated codes42. To reduce confounding by 

published T2D GWAS analyses, we restricted our analysis to abstracts published prior to 

December 2006. We first tested for enrichment of connectivity in the list of 77 primary 

transcripts (treating the 18 monogenic loci as a single locus to reduce confounding), and 

assessed significance via permutation4. These gene sets were then used as the “seed” against 

which the list of 77 secondary transcripts was queried for connectivity.

We employed a two-step GSEA strategy to test for enrichment of transcripts in T2D 

susceptibility loci within pathways pertaining to 16 biological hypotheses related to disease 

pathogenesis (full details of these hypotheses are presented in the Supplementary Note). In 

the first step, we applied MAGENTA46 to the Stage 1 meta-analysis. Genes in each pathway 

were scored on the basis of the most significant “local” SNP association using −110 kb/+40 

kb boundaries. The 95th percentile of association P-values from all genes in the genome was 

used to determine the enrichment cut-off. In the second “replication” step, nominally 

significant gene sets from step one (MAGENTA P < 0.05) were tested for enrichment of 

T2D association signals in the Stage 2 meta-analysis. To account for the bias in the 

Metabochip design to SNPs nominally associated with T2D and related metabolic traits, we 

employed a modified GSEA approach. We tested for enrichment among a broader set of 

primary or primary and secondary transcripts within LD regions defined by r2 > 0.5 on 

either side of the lead SNP, extended to the nearest recombination hotspot and then an 
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additional 50 kb (if there was no gene within the LD region, we used the nearest transcript). 

For robustness testing, we also examined enrichment in the nearest gene to the lead SNPs. 

The modified GSEA P-value was computed as the fraction of randomly sampled sets of loci, 

matched for number and local gene density to our primary and secondary lists, which have 

the same or more significant hyper-geometric probability than that of the T2D loci. For the 

“null” set, we used 1,600 LD-pruned Metabochip T2D replication SNPs with the lowest 

posterior probability of association (<5%) from the mixture model. To control for potential 

confounders, we applied the modified GSEA approach to two negative control lists: (i) loci 

defined by the lowest ranked independent T2D replication SNPs from our Stage 2 meta-

analysis; and (ii) loci for QT-interval on the basis of our Stage 2 meta-analysis for 

independent replication SNPs for this trait, excluding those within our primary and 

secondary lists of T2D susceptibility loci and those near monogenic diabetes genes.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of Z-scores from the Stage 2 meta-analysis, aligned to the risk allele from Stage 

1. Z-scores were calculated at a subset of 3,412 independent T2D replication SNPs (CEU r2 

< 0.05), excluding the 63 established and newly discovered autosomal susceptibility loci 

represented on Metabochip. The Z-score distribution is a mixture of: (i) the “null 

distribution” of SNPs having no effect on T2D (blue curve); and (ii) the “alternative 

distribution” of SNPs associated with the disease (red curve).
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Figure 2. 
Regional plots of T2D susceptibility loci with evidence of multiple association signals. Each 

point represents a Metabochip SNP passing quality control in our combined meta-analysis, 

plotted with their P-value (on a -log10 scale) as a function of genomic position (NCBI Build 

36). In each panel, the lead SNP is represented by the purple diamond. The color coding of 

all other SNPs (circles) indicates LD with the lead SNP (estimated by CEU r2 from the 1000 

Genomes Project June 2010 release): red r2 ≥ 0.8; gold 0.6 ≤ r2 < 0.8; green 0.4 ≤ r2 < 0.6; 

cyan 0.2 ≤ r2 < 0.4; blue r2 < 0.2; grey r2 unknown. Recombination rates are estimated from 
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the International HapMap Project and gene annotations are taken from the University of 

California Santa Cruz genome browser.
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Figure 3. 
Functional analyses. (a,b) Protein-protein interaction (PPI) sub-network for CREBBP and 

adipocytokine interactions. All direct interactions and common interactors between direct 

connections were extracted from the larger network of 314 proteins defined in the DAPPLE 

network analysis. Genes in the network are circles (nodes), colored according to the 

statistical relationship with T2D: common interactors between GWAS identified or 

monogenic loci are depicted as grey, monogenic loci (only) in blue, GWAS identified loci 

(only) in red, and loci with GWAS association and implicated by monogenic forms of 

diabetes are shown in green. Each interaction defined in the inWEB network is depicted by a 

line (edge) between nodes. (c) GRAIL circle plot of locus connectivity. Each locus is plotted 

in a circle where significant connections (P < 0.05) based on PubMed abstracts are drawn 

spanning the circle. Conservatively, we treated all monogenic loci (region 142) as a single 
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locus by which connectivity is assessed. The strongest connections (P < 0.001) are colored 

in bright red. (d) GSEA of associations in the adipocytokine signaling pathway. The black 

bars represent the Stage 1 meta-analysis P-values of 63 autosomal genes in the 

Adipocytokine Signaling pathways (KEGG). A density plot of the black bars is depicted in 

the top panel (red line). The replicating genes in the leading edge of the GSEA are listed. 

The Stage 2 modified GSEA P = 1.6×10−4 was calculated based on both the primary and 

secondary transcripts using the LD locus definition.
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